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* Arbi, A. and Tahri, N., 2022. Stability analysis of inertial neural
networks : A case of almost anti-periodic environment. Mathematical
Methods in the Applied Sciences.
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Harald Bohr : 1924-1926 (almost periodic)

• Relative density : ∀ε > 0, ∃L > 0 such that for any a ∈ R,
∃τ ∈ [a, a + L] verified ‖Φ(.+ τ)− Φ(.)‖Y ≤ ε.

• Sequential characterization : for all (Φ(.+ xn))n, extract a
convergent subsequence

(
Φ(.+ xϕ(n))

)
n
for the norm ‖.‖Y.

• Approximation characterization : there is a trigonometric polynomial
sequence (Pn)n which converges to Φ for the norm ‖.‖Y, où

Pn(x) =
Nn∑
k=1

ak,ne ixλk,n .

Vyacheslav Stepanov : 1926 (Stepanov almost periodic)

Hermann Weyl : 1927 (Weyl almost periodic)

Bochner : 1962-1964 (almost automorphic)

Zhang : 1994-1996 (Pseudo almost periodic)
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What is the Time Scales ?

A time scale is any closed subset of the real line R denoted by T,
(R, Z, N, [−1, 1] ∪ Z, qZ).
• The forward jump operator :σ(t) := inf{s ∈ T : s > t}.
• The backward jump operator : ρ(t) := sup{s ∈ T : s < t}.
• The graininess function : µ(t) := σ(t)− t.

t right-dense σ(t) = t t right-scattered σ(t) > t
t left-dense ρ(t) = t t left-scattered ρ(t) < t
t dense ρ(t) = t = σ(t) t isolated ρ(t) < t < σ(t)

Hilger S. (1988). Ein Maβkettenkalkul mit Anwendung auf Zentrumsmanningfaltigkeiten.
PhD Thesis, Universitat Wurzburg.

Bohner M. & Peterson A. (2001). Dynamic Equations on Time Scales : An introduction with
applications. Birkhäuser : Basel.
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4-derivative
Let f : T→ R be a function, we say that f admits a 4-derivative

(
f 4
)

if there exists ε > 0 such that

|[f (σ(t))− f (s)]− f 4(t)[σ(t)− s]| ≤ ε|σ(t)− s|, ∀t ∈ Tκ. (1)

We say that g(t) is antiderivate of f (t) if g4(t) = f (t), for all t ∈ Tκ.

Theorem
Suppose that f , g : T→ R two functions 4-differentiable in t ∈ Tκ.
Then

• (f + λg)4(t) = f 4(t) + λg4(t), for any constant λ.
• (f .g)4(t) = f 4(t)g(t) + f σ(t)g4(t) = f (t)g4(t) + f 4(t)gσ(t).

• If f (t)f σ(t) 6= 0, then
(

1
g

)4
= − f4(t)

f (t)f σ(t)

• If g(t)gσ(t) 6= 0 then
(

f
g

)4
= f4(t)g(t)−f (t)g4(t)

g(t)gσ(t) .
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rd-continuous functions and regressive group

• The function f : T −→ R is called rd-continuous if it is continuous
at all right-dense points of T and if left-hand limits exist as a finite
number at left-dense points of T. The set of all rd-continuous
functions f : T −→ R is denoted by Crd(T,R).

• R(T,R) = {p : T −→ R rd-continuous : 1 + µ(t)p(t) 6= 0}.
• (R,⊕) is an Abelian group under the ⊕ and 	 defined by

p ⊕ q := p + q + µpq, p 	 q := p − q
1 + µq . (2)

Bohner M. & Peterson A. (2003). Advances in Dynamic Equations on Time Scales. Boston,
MA : Birkhäuser.

Anatoly A. Martynyuk (2016). Stability Theory for Dynamic Equations on Time Scales.
Birkhäuser, Switzerland.

Adnène ARBI 11 / 55 Generalized oscillatory space in time scales and applications ...



Previous results and histories
Time Scales

The generalized pseudo almost periodic in time space scales
Analysis of Quaternion and Clifford neural networks models on generalized oscillatory space in time scales

Simulation of illustrative example
Neural Networks for solving some mathematical problem

The exponential function
Let p ∈ R(T,R) and s ∈ T, the exponential function on time scales
defined by

ep(t, s) :=

exp
(∫ t

s p(τ)dτ
)
, t ∈ T, µ = 0

exp
(∫ t

s
log(1+µ(τ)p(τ))

µ(τ) 4τ
)
, t ∈ T, µ > 0.

Let p, q ∈ R(T,R) and a, b, c ∈ T, then

• e0(t, s) = ep(t, t) = 1,
• ep(σ(t), s) =

(1 + µ(t)p(t))ep(t, s),
• ep(t, s) = e	p(s, t) = 1

ep(s,t) ,
• ep(t, s)eq(t, s) = ep⊕q(t, s),
• ep(t, r)ep(r , s) = ep(t, s),

• ep(t,s)
eq(t,s) = ep	q(t, s),

• [ep(c, .)]4 = −p(.)[ep(c, .)]σ,

•
∫ b
a p(t)ep(c, σ(t))4t =
ep(c, a)− ep(c, b).
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Time scale Π is invariant under translations

A time scale Π is called invariant under translations if

Π = {θ ∈ R : θ ± t ∈ T, ∀t ∈ T} 6= {0}.

In the rest of the sequence, Π is assumed to be invariant under
translations.
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Stepanov almost automorphic functions

Definition
A function f : R×R→ R such that f (., u) ∈ BSp(R,R) for each u ∈ R
is said to be Stepanov-like pseudo almost automorphic if f is written
in the following form :

f = g + φ,

where g ∈ SpAP(R× R,R) and φ ∈ SpPAA0(R× R,R). The space of
all such functions will be denoted by SpPAA(R× R,R).
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Lemma
1) If h, g ∈ SpPAA(R,R), then h + g , hg ∈ SpPAA(R,R).
2) If h ∈ SpPAA(R,R) and g ∈ SpAP(R,R), then hg ∈ SpPAA(R,R).

Lemma
(SpPAA(R,R), ‖ . ‖Sp ) is a Banach space, where

‖g‖Sp
l

:= lim
l→+∞

sup
α∈T

{
1
l

∫ α+l

α

‖g‖pE4t
} 1

p

,

‖g‖W p := lim
l→+∞

‖g‖Sp
l
.
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Weyl almost automorphic functions

Definition
Let f ∈ Lploc(T,A). f is said p-th Weyl almost automorphic if for any
sequence (sn)n∈N ⊂ Π, there exists a subsequence (snk )k∈N and function
ḡ ∈ Lploc(T,E) verified

‖f (t+snk )−ḡ(t)‖W p −→ 0 , ‖ḡ(t−snk )−f (t)‖W p −→ 0, as k −→ +∞.

Denote by AAW p(T,A) the set of all such functions.

Remarque
AA(T,E) ⊂ AAW p(T,E)
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Pseudo Weyl almost automophic functions

Definition
A function h ∈ BCrd(T,A) is said Weyl-ergodic if

lim
r→+∞

1
r

∫ r

−r

{
lim

l→+∞

1
l

∫ s+l

s−l
‖h(t)‖p4t

} 1
p

4s = 0. (3)

The set of all functions denoted by E(T,A).

Definition
Let f ∈ Lploc(T,A). f is called pseudo p-th Weyl almost automophic if it
can be represented as

f = g + h, (4)

where g ∈ AAW p(T,A) and h ∈ E(T,A). Denote the set of all such
functions by PAAW p(T,A).
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Remarque
Unlike the almost automophic concept and their extensions like pseudo
almost automophic and weighted pseudo almost automophic, the unique
decomposition of the pseudo weyl almost automophic in equation (4)
functions is not guaranteed.

Arbi A., Tahri N. (2022). New results on time scales of pseudo Weyl almost periodic solution
of delayed QVSICNNs. Computational and Applied Mathematics, 41(6), 1-22.

Diagana T. Almost Automorphic Type and Almost Periodic Type Functions in Abstract
Spaces. Switzerland : Springer International Publishing, 2013.

N’Guerekata G.M. Almost Automorphic and Almost Periodic Functions in Abstract Spaces.
Kluwer Acad., Plenum, New York, Boston, Moscow, London, 2001.

Li Y.K. and Huang X. (2022). Weyl almost automorphic solutions for a class of
Clifford-valued dynamic equations with delays on time scales. Mathematical Methods in the
Applied Sciences, 1-24. doi :10.1002/mma.8575.
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Cellular neural networks model

x ′i (t) = −ai(t)xi(t) +
n∑

m=1
bij(t)fj(xj(t)) +

n∑
m=1

cij(t)gj(xj(t − ξj(t))) + Ii(t),

(5)
Where i ∈ {1, 2, ..., n}, n correspon ds to the number of units in neural
networks, xi(t) ∈ R correspon ds to the state of the ith unit at time t,
ai(t) = diag(a1(t), a2(t), ..., an(t)) represents the rate with which the ith
neuron will reset its potential to the resting state in isolation when they
are disconnected from the network and the external inputs at time t, fj ,
gj : R→ R are output transfer functions, bij(.) and cij(.) present the
connection weights and the discretely delayed connection weights of the
jth neuron on the i neuron, respectively. ξj(.) correspon ds to transmission
delays at time t and satisfy t − ξj(t) ∈ R for t ∈ R, Ii(.) denote the state
bias of the ith neuron. The initial condition of system (5) is of the form

xi(s) = vi(s), s ∈ (−∞, 0],
where vi is continuous and vi ∈ Lploc ((−∞, 0],R) i = 1, ..., n.
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Hypotheses

(H1) : The functions aij(.), bij(.), cij(.), dij(.) ∈ SpPAA(R,R) and
ξj(.) ∈ SpAA(R,R) ∩ C1(R,R) such that

0 ≤ ξj(.) ≤ ξ, 0 ≤ ξ∗ − ξ′j (.) < 1− ξ′j (.).

(H2) : There exist positive constants Lfi , L
g
i , Lhi such that for any u,

v ∈ R, the activity functions fi , gi , hi ∈ C(R,R) satisfy

| fi(u)− fi(v) |≤ Lfi | u − v |,
| gi(u)− gi(v) |≤ Lgi | u − v | .

Furthermore, we suppose that fi(0) = gi(0) = 0.
(H3) : M < 1.
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Lemma

Let ψ = (ψ1, ..., ψn) ∈ SpPAA(R,R). Under assumptions (H1) and (H2),
the nonlinear operator defined by,

(Pψ)i(t) =
∫ t

−∞
e−
∫ t

s
ai (u)duKi(s)ds, i = 1, ..., n.

Where
Ki(t) =

∑n
m=1 bij(t)fj(ψj(t)) +

∑n
m=1 cij(t)gj(ψj(t − ξj(t))) + Ii(t),

maps SpPAA(R,R) into itself.

Theorem

Assume that the conditions (H1 − H3) are satisfied. Then, system (5)
has a unique Sp-pseudo almost automorphic solution in the region

B = {ψ : ψ ∈ SpPAA(R,R), ‖ ψ − ψ0 ‖Sp≤ r∗} .
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Theorem

Suppose that assumptions (H1 − H3) hold. Then the unique
Stepanov-like pseudo almost automorphic solution of system (5) is Sp-
exponentially stable whenever

(H4) : 1
a∗i
− ǎi <−

n∑
m=1

a∗i
(
b∗ijLfi

)2 −
n∑

m=1

a∗i
(
c∗ij L

g
i
)2

1− ξ∗ .

Proof

V (t) =
n∑

i=1

| Xi (t) |2 êλt +
exp(λ(µ̄+ ξ̄))

1− ξ∗

n∑
i=1

n∑
m=1

a∗i
(
c∗ij L

g
i
)2
∫ t

t−ξ(t)
| Xi (z) |2 êλzdz.

where X(.) = u(.)− v(.).
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Clifford neural networks model

1 As a generalization of real-valued neural networks, complex-valued
neural networks and quaternion-valued neural networks,
Clifford-valued neural networks have been proved to have more
advantages than real-valued neural networks in dealing with
high-dimensional data and spatial transformation

2 The importance of quaternions is justified by their various
applications in quantum physics where they are used to translate
rotations by taking into account the spin of a particle. Quaternions
are also used in computer graphics, for example they were used to
model rotations in the 3D video game Tomb Raider.
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z4ij (t) = −dij(t)zij(t)−

∑
ckl∈Nr (i,j)

bklij (t)fij(zkl(t))zij(t)

−
∑

ckl∈Ns (i,j)
cklij (t)gij(zkl(t − βkl(t)))zij(t) + Dij(t),

(6)

• ij ∈ Γ := {11, ..., 1n, ...,m1, ...,mn},

• dij , bklij , cij , zij , Dij ∈ A,

• βkl (t) ∈ T+ satisfy
t − βkl (t) ∈ T, ∀t ∈ T,

• dij (t) =
∑
B

dB
ij eB ∈ A,

d∗ij (t) =
∑
B 6=∅

dB
ij eB ∈ A,

dR
ij (t) = dij (t)− d∗ij (t),

• d− = min
ij∈Γ
{ inf
t∈T
{dR

ij (t)}},

• d+ = max
ij∈Γ
{sup
t∈T
{dR

ij (t)}},

• d̃+ = sup
t∈T
{‖dR

ij (t)‖A},

• bkl+ij = sup
t∈T
{bklij (t)},

• ckl+ij = sup
t∈T
{cklij (t)},

• β+
kl = sup

t∈T
{βkl (t)},

• β′kl = max
ij∈Γ
{sup
t∈T
{β4kl (t)}}.

Nr (i , j) := {cpq : max(|p − i |, |q − j |) ≤ r , 1 ≤ p ≤ m, 1 ≤ q ≤ n}.
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Assumptions
(P1) For ij ∈ Γ, there exist Lfij > 0 and Lgij > 0 such that

‖fij(z)− fij(z∗)‖A ≤ Lfij‖z−z∗‖A, ‖gij(z)−gij(z∗)‖A ≤ Lgij‖z−z∗‖A
where fij(0) = gij(0) = 0 for all z , z∗ ∈ A.

(P2) For ij ∈ Γ, aRij ∈ AA(T,R+) satisfy −aRij ∈ R+, ãR+

ij ∈ AA(T,A),
bklij , cklij ∈ AA(T,R+), Dij ∈ PAAW P(T,A),
βkl ∈ AA(T,R+) ∩ C1

rd(T,T), β′ < 1.
Denote ϕ0 = (ϕ0

11, ..., ϕ
0
1n, ..., ϕ

0
m1, ..., ϕ

0
mn), where

ϕ0
ij(t) =

∫ t

−∞
e−d−(t, σ(s))Dij(s)4s, ij ∈ Γ.

Choose α ≥ ‖ϕ0
ij(t)‖A

Υ =
{
ψ ∈ BCUrd(T,Amn) :

∥∥ψ − ϕ0∥∥
∞ ≤ 2α

}
.

So for each ψ ∈ Υ, we have ‖ψ‖∞ ≤
∥∥ψ − ϕ0

∥∥
∞ +

∥∥ϕ0
∥∥
∞ ≤ 2α.
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Assumptions

(P3)

K = 2
d− max

ij∈Γ

d̃+
ij +

∑
ckl∈Nr (i,j)

2αbkl
+

ij Lfij +
∑

ckl∈Ns (i,j)

2αckl
+

ij Lgij

 < 1.

(P4) For p > 2

max
ij∈Γ

24
(
2p − 4
d−p

)p−2( 4
d−p

)2 (d̃+
ij
)p + 2

 ∑
ckl∈Nr (i,j)

2αbkl
+

ij Lfij

p

+
(
1 + 2e

p
4 a+β+

1− β′

) ∑
ckl∈Ns (i,j)

2αckl
+

ij Lgij

p < 1,
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and, for p = 2

max
ij∈Γ

24
(

2
d−

)2
2 (d̃+

ij
)2 + 2

 ∑
ckl∈Nr (i,j)

2αbkl
+

ij Lfij

2

+
(
1 + 2e 1

2 d+β+

1− β′

) ∑
ckl∈Ns (i,j)

2αckl
+

ij Lgij

2

 < 1,
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Control system of Clifford model

The synchronisation of two dynamical neural networks is one more
important mathematical problem due to its interesting place in the
real world application.
The Clifford algebra is an algebraic structure that generalizes the
notion of complex number and quaternion.
The study of Clifford’s algebras is closely related to the theory of
quadratic form, and it has important applications in geometry and
theoretical physics.
Their name is derived from that of the mathematician William
Kingdon Clifford that introduced since 1878.
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The clifford algebra on Rn is defined as

A =

 ∑
B⊂{1,2,...,χ}

bBeB : bB ∈ R

 ,

where eB = ek1ek2 ...ekv , B = k1k2...kv , 1 ≤ k1 < k2 < ... < kv ≤ χ.
Besides, e∅ = e0 = 1 and ek1 , ek2 , ..., ekv are labeled Clifford-generators
and verify e2

ij + 1 = 0, and eijej + ejeij = 0, i 6= j for all i , j = 1, ..., χ. We
always assume that the product of Clifford algebra afterwards without
any further comments : ek1ek2 ...ekv = ek1k2...kv ,
Θ = {∅, 1, 2, ..., B, ...χ}, then

A =
{∑

B∈Θ
bBeB : BB ∈ R

}
.

For x ∈
∑
B
xBeB ∈ A, and x =t (x1, ..., xn) ∈ An, we define

‖x‖A = max
B∈Θ

{
|xB |

}
, ‖x‖An = max

1≤p≤n
{‖xp‖A} .
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Consider a clifford-valued network control system
y4ij (t) = −dij(t)yij(t)−

∑
ckl∈Nr (i,j)

bklij (t)fij(ykl(t))yij(t)

−
∑

ckl∈Ns (i,j)
cklij (t)gij(ykl(t − βkl(t)))yij(t) + Dij(t) + Sij(t),

(7)
where the state is yij ∈ A, the control is Sij ∈ A and ij ∈ Γ.
The synchronization errors between system (6) and system (7) are given
by

xij(t) = zij(t)− yij(t), ij ∈ Γ.
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Error system


x4ij (t) = −dij (t)xij (t) +

∑
ckl∈Nr (i,j)

bklij (t) [fij (ykl (t))yij (t)− fij (zkl (t))zij (t)]

+
∑

ckl∈Ns (i,j)
cklij (t) [gij (ykl (t − βkl (t)))yij (t)− gij (zkl (t − βkl (t)))zij (t)] + Sij (t)

(8)
Let a feedback

Sij (t) =
∑
A∈A

SA
ij (t)eA +

∑
ckl∈Nr (i,j)

bklij (t)fij (zkl (t))zij (t)−
∑

ckl∈Nr (i,j)
bklij (t)fij (zkl (t))

+
∑

ckl∈Ns (i,j)
cklij (t)gij (ykl (t − βkl (t)))yij (t)−

∑
ckl∈Ns (i,j)

cklij (t)gij (ykl (t − βkl (t)))

SA
ij (t) = −M1ijxAij (t)−M2ij

∣∣zAij (t)
∣∣α sgn

(
xAij (t)

)
−M3ij

∣∣xAij (t)
∣∣γ sgn (xAij (t)

)
−M4ij

∣∣∣∣∑
ij∈Γ

xAij (t − βij (t))

∣∣∣∣ sgn (xAij (t)
)

(9)
where ij ∈ Γ, A ∈ A, 0 < α < 1, γ > 1 and M1ij ,M2ij ,M3ij ,M4ij are the parameters

that will be determined.
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Theorem

The network (6) has only one solution in the region Υ, as soon as the
properties (P1)− (P4) are fulfilled. Moreover, the of network (6) is
exponentially stable.

Theorem
Assume (P1) hold. If in addition, M1ij , M2ij , M3ij and M4ij of the
feedback (9) satisfy

M1ij ≥ −d− +
∑

ckl∈Nr (i,j)

bkl
+

ij Lfij (10)

M2ij > 0, M3ij > 0 and M4ij ≥
∑

ckl∈Ns (i,j)

ckl
+

ij Lgij , (11)

for all ij ∈ Γ. By means of the feedback (9) can reach synchronization
the network (8) at fixed time.
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In particular, for
∑

ckl∈Nr (i,j)
bkl+ij Lfij ≥ d−, we have the following corollary

Corollary
Assume (P1) hold. If in addition, M1ij , M2ij , M3ij and M4ij of the
feedback (9) satisfy

M1ij ≥ 0 (12)
M2ij > 0 (13)
M3ij > 0 (14)

M4ij ≥
∑

ckl∈Ns (i,j)

ckl
+

ij Lgij , (15)

for all ij ∈ Γ. By means of the feedback (9), the system (6) and the
system (7) can reach synchronization at fixed time.
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In network (6), let n = 2, r = s = 1, where Θ = {0, 1, 2, 12} and

zij(t) = z0
ij (t)e0 + z1

ij (t)e1 + z2
ij (t)e2 + z12

ij (t)e12

d11(t) = 32 cos2(1.71t)e0 + 0.28 sin(2t)e1 − 0.4 cos(2.23t)e2 + 0.001 sin2(3t)e12

d21(t) = 39 |sin(1.41t)| e0 − 0.5 cos(2t)e1 − 0.33 cos2(2.64t)e2 + 0.17 sin(t)e12

d12(t) = 33 sin2(t)e0 − i0.28 cos(5t)e1 − 0.25 sin3(2.23t)e2 + 1.66 sin2(3t)e12

d22(t) = 37 cos4(1.71t)e0 + 0.25 sin(7t)e1 − 0.33| cos(3.31t)|e2 + 0.12 sin2(5t)e12,

f11(z) = f12(z) = 0.4 sin(0.25z0 + 0.28z2)e0 − 0.4
∣∣1.05z1 + 0.34z2

∣∣ e1

+ 0.25 cos(0.2z0)e2 + 0.25 sin(0.2z0)e12
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f21(z) = f22(z) = 0.25
∣∣0.47z1 + 0.24z12

∣∣ e0 − 0.17 sin(0.2z0 + 0.28z12)e1 − 0.4
∣∣1.05z1 + 0.34z2

∣∣ e2 + 0.47 sin(0.2z1)e12

g11(z) = g12(z) = 0.05 sin(6.34z0)e0 − 0.04 sin(1.4z12)e1 + 0.07 sin(0.33z2 + 0.33z1)e2 + 0.04 sin(5.64z0)e12

g21(z) = g22(z) = 0.05
∣∣0.66z1 + 0.33z2

∣∣ e0 − 0.04 sin(1.4z12 + z0)e1 + 0.04 sin(5.64z0)e2 − 0.04 sin(1.4z12)e12

D11(t) = D12(t) = 1.41 cos(t)e0 + 1.33e−|t|e1 + 0.47 sin(0.5t)e2 − 0.2 sin(2t)e12

D21(t) = D22(t) = 0.47 sin(0.5t)e0 + 0.47 cos(1.41t)e1 − 0.2 sin(2t)e2 + e−|t|e12

and k, l = 1, 2 ∈ N1(i, j) for any i = j = 1, 2,

b11
ij (t) = b21

ij (t) = 0.33| sin(1.41t)|e0 + 0.16 cos(4t)e1 + (0.75 cos(2t) + 1)e2 + 0.25 cos2(2.23t)e12,

b12
ij (t) = b22

ij (t) = 0.3| cos(t)|e0 + 0.17 sin(3t)e1 + 0.25 cos(2t)e2 + 0.21 sin(2t)e12,

c11
ij (t) = c21

ij (t) = (sin(1.73t) + 3)e0 + | cos(2.23t)|e1 + 2 sin2(2.64t)e2 + 0.25 cos(2t)e12,

c12
ij (t) = c22

ij (t) = cos(1.5t)e0 + sin(2t)e1 + cos3(2.64t)e2 + 0.2 sin(2t)e12,
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bklij :

 b11
ij b12

ij b13
ij

b21
ij b22

ij b23
ij

b31
ij b32

ij b33
ij


cklij :

 c11
ij c12

ij c13
ij

c21
ij c22

ij c23
ij

c31
ij c32

ij c33
ij


β11(t) = 0.04 cos8(1.41t), β12(t) = 0.06 sin2(1.41t)
β21(t) = 0.02 cos2(0.28t), β22(t) = 0.03 cos4(0.24t),
M1ij = 10,M2ij = 5,M3ij = 6,M4ij = 12.
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After all calculations we have

Lf11 = Lf12 = 0.4, Lf21 = Lf22 = 0.47
Lg11 = Lg12 = 0.07, Lg21 = Lg22 = 0.05
d̃+

11 = 0.4, d̃+
12 = 1.66, d̃+

21 = 0.5, d̃+
22 = 0.33∑

ckl∈N1(1,1)

bkl
+

11 =
∑

ckl∈N1(1,2)

bkl
+

12 =
∑

ckl∈N1(2,1)

bkl
+

21 =
∑

ckl∈N1(2,2)

bkl
+

22 = 4.1

∑
ckl∈N1(1,1)

ckl
+

11 =
∑

ckl∈N1(1,2)

ckl
+

12 =
∑

ckl∈N1(2,1)

ckl
+

21 =
∑

ckl∈N1(2,2)

ckl
+

22 = 10

d− = 32, d+ = 39, β = 0.16, β′ = 0.5

Take α = 0.06 ≥ ‖Φ0‖. For 1 ≤ i , j ≤ 2 we have

K = 2
d− max

ij∈Γ

d̃+
ij +

∑
ckl∈Nr (i,j)

0.12bkl
+

ij Lfij +
∑

ckl∈Ns (i,j)

0.12ckl
+

ij Lgij

 = 0.0495 < 1,
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For 1 ≤ i , j ≤ 2, take p = 3 we have

max
ij∈Γ

24
(

2
3d−

)(
4

3d−

)2 (d̃+
ij
)3 + 2

 ∑
ckl∈Nr (i,j)

0.12bkl
+

ij Lfij

3

+
(
1 + 2e 3

4 d+β

1− β′

) ∑
ckl∈Ns (i,j)

0.12ckl
+

ij Lgij

3

 = 0.1761 < 1,

and, for p = 2 we obtain

max
ij∈Γ

24
(

2
d−

)2
2 (d̃+

ij
)2 + 2

 ∑
ckl∈Nr (i,j)

0.12bkl
+

ij Lfij

2

+
(
1 + 2e 1

2 d+β

1− β′

) ∑
ckl∈Ns (i,j)

0.12ckl
+

ij Lgij

2

 = 0.5422 < 1.
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For example i = j = 1, k, l = 1, 2 ∈ N1(1, 1),∑
ckl∈N1(1,1)

bkl11(t)f11(zkl(t))z11(t) = b11
11(t)f11(z11(t))z11(t) +

b12
11(t)f11(z12(t))z11(t) + b21

11(t)f11(z21(t))z11(t) + b22
11(t)f11(z22(t))z11(t),

M1ij = 10,M2ij = 5,M3ij = 6,M4ij = 12 ∈ R
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Figure – Framework of present methodology for solving the nonlinear fourth
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Figure – Pseudocode
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Since the early 1980s, neural technologies have shown interesting
potential for the solving optimization problems. They present in this
field, two major advantages : the first lies in the fact that some
neural algorithms often solve very well optimization issues ;
The second comes from the fact that these algorithms are
particularly suitable for problems that require extremely short
response times. In our work we go focus more specifically on the
application of the Hopfield neural network.
Hopfield neural networks are networks with energy minimization,
they are composed of neurons fully connected, they evolve from a
state initial.
They can be used to solve any combinatorial optimization problem,
such as that of the traveling salesman, on the condition of deftly
modeling the problem.
The evolution of the network state is based on the minimization of
the energy function of the system. So it lends itself very well good at
solving optimization problems.
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For the optimization, we use the network of the following way : from
an initial state, we leave the network evolve freely up to an
attractor, which is typically, for optimization problems, a state stable
independent of time (a fixed point of the dynamics). We then says
that the network has converged : convergence is reached when the
outputs of the neurons no longer evolve.
The dynamics of the network are generally asynchronous : between
two instants of time, a single neuron, chosen randomly, is update ; in
other words, its potential is calculated, and its output re-evaluated
accordingly.
When these networks are used to solve problems optimization, the
weights of the connections are determined analytically from the
formulation of the problem ; in general, this is done directly from the
function energy associated with the problem. In addition, the
outputs of neurons, in the attractor towards which the network
converges, encode a solution to the optimization problem.
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Codage (Traveling Salesman problem)

Etape 1 Etape 2 Etape 3 Etape 4 Etape 5 Etape 6
Ville A 1 0 0 0 0 1
Ville B 0 1 0 0 0 0
Ville C 0 0 1 0 0 0
Ville D 0 0 0 1 0 0
Ville E 0 0 0 0 1 0
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Let V (x , i) is the output of neuron in the position (x , i) of our matrice.

E1 =
∑
x

∑
i

∑
j 6=i

V (x , i) · V (x , j)

E2 =
∑
i

∑
x

∑
y 6=x

V (x , i) · V (y , i)

E3 = (
∑
x ,i

V (x , i)− N)2

E4 =
∑
x

∑
y 6=x

∑
i

[dxy · V (x , i) · (V (y , i + 1) + V (y , i − 1))].

E = −a · E1 − b × E2 − c · E3 − d · E4,

with (a, b, c, d) ∈ R4.
Identification of the energie E with the Hopfield energie.
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Thank you for your attention
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