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Abstract

In this paper, a class of inertial neural networks with time delays is considered. By
developing an approach based on differential inequality techniques coupled with
Lyapunov funct\on method, some assertions are demonstrated to guarantee the
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Abstract
This paper studies a class of inertial neural networks with leakages and varying delays
on timescales:

x4 (1) = —ai(OxL (1 = (D) = B X = §O) + Y iy (1) 05@)
=

+ Y di (g (x5 = gy () + Si ().
=

The problems of the existence, the uniqueness and the exponential stability of almost
anti-periodic solution on times: ed. We establish some sufficient
conditions to guarantee the main results, by constructing the Lyapunov functions and
using some classical inequalities. A numerical example is given for illustration.
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Abstract

In this work, the problems of investigation of pseudo Weyl almost periodic solution of
quaternion-valued shunting inhibitory model of type cellular neural networks with time-
varying delays on time space scales are considered. We first introduce the notion of pseudo
‘Weyl almost periodicity on time scales. Next, using fixed point theorem, the theory of time
scales, Holder’s inequality and Gronwall’s inequality, we give sufficient conditions for the
existence and the stability. Finally, we present a numerical appllnanon to illustrate the feasi-
bility of our outcomes.

Keywords Quaternion-valued shunting inhibitory cellular neural networks - Pseudo Weyl
almost periodic - Time space scales

Mathematics Subject Classification 46505 - 68T07 - 39A24 - 34N05
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ApsTRACT. Pseudo almost automorphy (PAA) is a natural generalization of
Bochner almost automorphy and Stepanov almost automorphy. Therefore.
the results of the existence of PAA solutions of differential equations are few,
and the results of the existence of pseudo almost automorphic solutions of
difference cquations are rare. In this work, we are concerned with a model
ayed cellular neural networks (CNNs). The delays are considered in
varying-time form. By the Banach’s fixed point theorem, Stepanov like PAA.
and constructing a novel Lyapunov functional, we fixed »
agreement the existence and the Stepanov-exponential stability of Stepanov-
like PAA solution of this model of CNNs ave obtained. In additon, a musserical

ufficient criter
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Time Scales

@ Harald Bohr : 1924-1926 (almost periodic)

e Relative density : Ve > 0, 3L > 0 such that for any a € R,
3t € [a,a + L] verified ||®(. +7) — ®()||y <e.

o Sequential characterization : for all (®(. + x,)),, extract a
convergent subsequence (CD( + X(p(,,)))n for the norm ||.||v.

e Approximation characterization : there is a trigonometric polynomial
sequence (P,)» which converges to ® for the norm ||.||v, ou

Pn(x) = gn: ak,,ne"“kv".
k=1
@ Vyacheslav Stepanov : 1926 (Stepanov almost periodic)
e Hermann Weyl : 1927 (Weyl almost periodic)
@ Bochner : 1962-1964 (almost automorphic)

@ Zhang : 1994-1996 (Pseudo almost periodic)
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Time Scales

What is the Time Scales?

A time scale is any closed subset of the real line R denoted by T,
(R, Z, N, [-1,1]UZ, ¢%).

e The forward jump operator :o(t) :=inf{s € T : s > t}.

e The backward jump operator : p(t) :=sup{s € T : s < t}.

e The graininess function : u(t) := o(t) — t.

t right-dense o(t)y=t t right-scattered o(t) >t
t left-dense p(t)=t t left-scattered p(t) <t
t dense p(t) =t =o(t) t isolated p(t) <t <o(t)

Q Hilger S. (1988). Ein Maf kettenkalkul mit Anwendung auf Zentrumsmanningfaltigkeiten.
PhD Thesis, Universitat Wurzburg.

% Bohner M. & Peterson A. (2001). Dynamic Equations on Time Scales : An introduction with
applications. Birkhauser : Basel.

Adnéne ARBI  9/55 Generalized oscillatory space in time scales and applications ...



Time Scales

/\-derivative

Let f : T — R be a function, we say that f admits a A-derivative (fA)
if there exists € > 0 such that

[F(a(8)) = F()] = FA(O)[o(t) = sl < elo(t) = s, YeeT" (1)
We say that g(t) is antiderivate of f(t) if g©(t) = f(t), for all t € T*.

Theorem

Suppose that f,g : T — R two functions A-differentiable in t € T*.
Then

o (f+2g)2(t) = F2(t) + A\g®(t), for any constant \.
o (f.g)2(t) = f2(t)g(t) + F7(t)g™(t) = f(t)g™ (t) + F2(t)g ().

A A
o Iff(£)f°(t) #0, then (;) = s

A A A
o f _ 2 (0)e(t)=f(t)e™ (1)
[ ] Ifg(t)g (t) 7é 0 then (E) = W.
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Time Scales

rd-continuous functions and regressive group

e The function f : T — R is called rd-continuous if it is continuous
at all right-dense points of T and if left-hand limits exist as a finite
number at left-dense points of T. The set of all rd-continuous
functions f : T — R is denoted by C,4(T,R).

e R(T,R) ={p: T — R rd-continuous : 1+ pu(t)p(t) # 0}.

e (R,®) is an Abelian group under the @ and & defined by

pP—q
®qg=p+qg+ , pPOq:= . 2
PO ai=p+atpup, pOqi= (2)

Q Bohner M. & Peterson A. (2003). Advances in Dynamic Equations on Time Scales. Boston,
MA : Birkhauser.

Q Anatoly A. Martynyuk (2016). Stability Theory for Dynamic Equations on Time Scales.
Birkh3user, Switzerland.
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Time Scales

The exponential function

Let p € R(T,R) and s € T, the exponential function on time scales

defined by
(t.9) exp ftp ) teT, n=0
e,(t,s) =
P exp f;%&ﬁ teT, p>0.

Let p,g € R(T,R) and a, b,c € T, then
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The generalized pseudo almost periodic in time space scales

Plan

© The generalized pseudo almost periodic in time space scales
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Exponential stability of Cellular neural networks

Analysis of Quaternion and Clifford neural networks models on generalized osc  Fixed-time synchronization of the system (CV-SICNN)

Plan

© Analysis of Quaternion and Clifford neural networks models on
generalized oscillatory space in time scales
o Existence, unicity and stability of dynamical neural networks
@ Exponential stability of Cellular neural networks
@ Fixed-time synchronization of the system (CV-SICNN)
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Exponential stability of Cellular neural networks
Analysis of Quaternion and Clifford neural networks models on generalized osc  Fixed-time synchronization of the system (CV-SICNN)

Time scale I is invariant under translations

A time scale 1 is called invariant under translations if
M={0cR: 0£tecT, Vte T} #{0}.

In the rest of the sequence, I is assumed to be invariant under
translations.
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Stepanov almost automorphic functions

Definition

A function f : R x R — R such that f(.,u) € BSP(R,R) for each v € R
is said to be Stepanov-like pseudo almost automorphic if f is written
in the following form :

f=g+9,

where g € SPAP(R x R,R) and ¢ € SPPAA(R x R,R). The space of
all such functions will be denoted by SPPAA(R x R, R).
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Analysis of Quaternion and Clifford neural networks models on generalized osc  Fixed-time synchronization of the system (CV-SICNN)

1) If h,g € SPPAA(R,R), then h + g, hg € SPPAA(R, R).
2) If h € SPPAA(R,R) and g € SPAP(R, R), then hg € SPPAA(R, R).

(SPPAA(R,R), || - |lse) is a Banach space, where

1
a+/ P
lels = lim supd= [ glE At
g I oo oo P / . gllr )

lgllws = lim llgllsp-
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Exponential stability of Cellular neural networks
Analysis of Quaternion and Clifford neural networks models on generalized osc  Fixed-time synchronization of the system (CV-SICNN)

Weyl almost automorphic functions

Definition

Let f € L} (T,A). f is said p-th Weyl almost automorphic if for any
sequence (s,)nen C [, there exists a subsequence (s, Jken and function
g €L (T,E) verified

loc

\|f(t+sn)—&(t)lwr —> 0 ,||&8(t—5n)—F(t)||lwe —> 0, as k — +o0.

Denote by AAWP(T, A) the set of all such functions.

Remarque

AA(T,E) ¢ AAWP(T,E)
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The generalized pseudo almost periodic in tim Exponential stability of Cellular neural networks
Analysis of Quaternion and Clifford neural networks models on Fixed-time synchronization of the system (CV-SICNN)
Sin n of illustrativ: e
Neural Networks for solving

g > mathematic

Pseudo Weyl almost automophic functions

A function h € BC,4(T, A) is said Weyl-ergodic if

1 r 1 s+ %
q 4 q 4 p _

The set of all functions denoted by E(T, A).

Definition
Let f € L, (T,A). f is called pseudo p-th Weyl almost automophic if it
can be represented as

f=g+h, (4)

where g € AAWP(T, A) and h € E(T, A). Denote the set of all such
functions by PAAWP(T, A).
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Remarque

Unlike the almost automophic concept and their extensions like pseudo
almost automophic and weighted pseudo almost automophic, the unique
decomposition of the pseudo weyl almost automophic in equation (4)
functions is not guaranteed.

% Arbi A., Tahri N. (2022). New results on time scales of pseudo Weyl almost periodic solution
of delayed QVSICNNs. Computational and Applied Mathematics, 41(6), 1-22.

Q Diagana T. Almost Automorphic Type and Almost Periodic Type Functions in Abstract
Spaces. Switzerland : Springer International Publishing, 2013.

& N'Guerekata G.M. Almost Automorphic and Almost Periodic Functions in Abstract Spaces.
Kluwer Acad., Plenum, New York, Boston, Moscow, London, 2001.

Q Li Y.K. and Huang X. (2022). Weyl almost automorphic solutions for a class of
Clifford-valued dynamic equations with delays on time scales. Mathematical Methods in the
Applied Sciences, 1-24. doi :10.1002/mma.8575.
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Cellular neural networks model

n n

m=1 m=1

(5)
Where i € {1,2,...,n}, n correspon ds to the number of units in neural
networks, x;(t) € R correspon ds to the state of the ith unit at time ¢,
a;(t) = diag(ai(t), ax(t), ..., an(t)) represents the rate with which the ith
neuron will reset its potential to the resting state in isolation when they
are disconnected from the network and the external inputs at time t, f;,
g : R — R are output transfer functions, b;(.) and ¢;(.) present the
connection weights and the discretely delayed connection weights of the
Jth neuron on the i neuron, respectively. £;(.) correspon ds to transmission
delays at time t and satisfy t — ;(t) € R for t € R, /;(.) denote the state
bias of the ith neuron. The initial condition of system (5) is of the form

xi(s) = vi(s), s € (—o0,0],
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Analysis of Quaternion and Clifford neural networks models on generalized osc Fixed-time synchronization of the system (CV-SICNN)

Hypotheses

ci(.), dy(.) € SPPAA(R,R) and

(Hi1) : The functions aj(.), bJ( ), €
)N CHR,R) such that

() € SPAA(R,R
0<&()<E 0<& &) <1=¢().

(Ha) : There exist positive constants Lf, L%, Ly, such that for any u,
v € R, the activity functions f;, g;, h € C(R,R) satisfy

| fi(u) = (V) IS L Ju—v],
| gi(u) —&i(v) [ LF [u—v].

Furthermore, we suppose that £;(0) = g;(0) = 0.
(H3) M < 1.
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Simulation of illustrative )
Neural Networks for sol

Lemma

Let ¢ = (¢1, ..., ¢¥n) € SPPAA(R,R). Under assumptions (Hy) and (H-),
the nonlinear operator defined by,

t t
(Pw),.(t):/ e*fsai(u)duKi(S)ds’ i=1,...n

Where
Ki(t) = 3y bi(0)6(05(1)) + 320y cii(£)g(wi(t — &(8)) + hi(t),
maps SPPAA(R, R) into itself.

Theorem

Assume that the conditions (H; — H3) are satisfied. Then, system (5)
has a unique SP-pseudo almost automorphic solution in the region

B = {¢: ¢ € SPPAA(R,R), || ¢ — o [[sp< r"}.
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Theorem

Suppose that assumptions (H; — Hs) hold. Then the unique
Stepanov-like pseudo almost automorphic solution of system (5) is SP-
exponentially stable whenever

1 e s a (cplE)’
(Ha) : E—a,-<—Za,- (bpLl) _ZW
J m=1

m=1

[0 t
l') — Z | X l’) ‘2 ANt eXP(A(Mg'r g)) Zzaf (C;L,g)2/ | X;(z) |2 éAZdz,
i=1 m=1 t—¢&(t)

where X(.) = u(.) — v(.).
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Clifford neural networks model

@ As a generalization of real-valued neural networks, complex-valued
neural networks and quaternion-valued neural networks,
Clifford-valued neural networks have been proved to have more
advantages than real-valued neural networks in dealing with
high-dimensional data and spatial transformation

@ The importance of quaternions is justified by their various
applications in quantum physics where they are used to translate
rotations by taking into account the spin of a particle. Quaternions
are also used in computer graphics, for example they were used to
model rotations in the 3D video game Tomb Raider.
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Analysis of Quaternion and Clifford neural networks models on generalized osc  Fixed-time synchronization of the system (CV-SICNN)

O~ T HOiE0
LY gt - Bue)z(e) < Dy, )

e €Ns(i.j)

e jerl:={11,..,1n,...,ml, ..., mn}, o dt = max{sup{ R(£)}},
jer +e
odU,b,cU,zU,DUGA .
! o df = sug{Hdij(t)”A}'
te

o Bu(t) € T satisfy

t—PBu(t) €T, vteT, o bfj.’+ = fug{bgl(t)},
° ut)—ZdBeBEA )
Kt _
_ Z dl_‘;?eB cn o ¢ sup{c (1)},
B#0 +_
le(t) _ d,‘j(t) _ d;(t), L4 Bk/ = Sup{Bk/(t)}v
e d = mln{mf{dR(t)}} ° /Bk/ = max{sup{ﬁk/( )
jer teT jer te
N(i,j) i={cpq: max(lp—il,lg—j])<r, 1<p<msl<q<n}h
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Assumptions

(P1) For ij €T, there exist L, > 0 and L§ > 0 such that

1F(2) = f5(2")l|a < Lillz—2"1la: llgi(2) — gi(z")la < L§llz—2"|a

where f;(0 )—gj( ) =0 for all z,z* € A.
(P2) For ij €T, af € AA(T,R*) satisfy —aff € R*, 38" € AA(T, A),
bl ckl e AA(T R*), D; € PAAWP(’H‘,A),
B € AA(T,RT) N CL(T,T), g’ < 1.
Denote ¢% = (97, ey 0%, s %15 s ©%,)), Where
t
A= [ e (tols)Dis) b5, GeET,

— 00

Choose o > [|l@)(t)]|a
T = {¢ € BCUS(T,A™): [l —¢°|, <20}
So for each 1 € T, we have |9 < || — ¢°

oo

<‘00“00 < 2.
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Assumptions

2 ~
K= d- Tea? dif + Z 204b5/+LZ- + Z 2ac§’+L§ < 1.
e €N (i) cu€Ns(inj)

(Ps4) Forp>2

P
2p—4\"7( 4 S+\P Kt F
a2 (50) (F5) @ X ey
€N (i)
p
2eiat gt pn
+ 1+1—7ﬁ/ ZHQOKCU Li <17
CkIGNS(’7J)
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Analysis of Quaternion and Clifford neural networks models on generalized osc aned time synchronization of the system (CV-SICNN)

and, for p =2

2
wdoa(2) 2@ +2( S 2ab L
k€N (i,))
) 2
2e2d*pt .
1+ﬁ Z QOéCl-j Li <17
cr€Ns(i,j)
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Control system of Clifford model

@ The synchronisation of two dynamical neural networks is one more
important mathematical problem due to its interesting place in the
real world application.

o The Clifford algebra is an algebraic structure that generalizes the
notion of complex number and quaternion.

@ The study of Clifford’s algebras is closely related to the theory of
quadratic form, and it has important applications in geometry and
theoretical physics.

@ Their name is derived from that of the mathematician William
Kingdon Clifford that introduced since 1878.
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Analysis of Quaternion and Clifford neural networks models on generalized osc ime synchronization of the system (CV-SICNN)

The clifford algebra on R" is defined as

A= > bPeg: bPeRy,
Bc{1,2,...,x}
where eg = ey, €k, ..., B = kiko..ky,, 1 < ki < ko < ... < k, < x.
Besides, ey = eg =1 and ey, ex,, ..., €k, are labeled Clifford-generators
and verify e5 +1 =0, and ejej + eje; =0, i #jforall i,j=1,...,x. We
always assume that the product of Clifford algebra afterwards without

any further comments : e, ex,...€x, = €k k,...k
©=1{0, 1,2, .., B, ..x}, then

v

A= ZbBeB: BEeR
Be®©

For x € Y xBeg € A, and x = (xq, ..., x,) € A", we define
B

B
Il = max {1} lxlse = max ()}
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Analysis of Quaternion and Clifford neural networks models on generalized osc  Fixed-time synchronization of the system (CV-SICNN)

Consider a clifford-valued network control system

yi(6) = —=dy(t)yy(t) — %:(. ' BY(e)fy (v (£))yi(£)
_ %. ') ! ()gi(yi(t — Bua(t)))ys(t) + Dy(t) + Si(t),

(7)
where the state is y;; € A, the control is 5; € A and jj € T.
The synchronization errors between system (6) and system (7) are given
by

xj(t) = z;(t) — yy(t), HET.
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Error system

X,',-A(f) = —dy(t)x(t)+ >0 by (6) [f(ym(£))ys(t) — (2w (t)) 2z ()]

k€N (i)

+ > ) lgi(ym(t = Bu()))yii(t) — gi(zu(t — Bu(t)))zi(£)] + Sii(t)
ek €Ns (i)
(8)

Let a feedback

Si(t) =3 Sf(theat > bE(Ofi(zu(®)zi(t) = >0 b ()fy(zu(t)

AcA ck €N (ir) ek €N (i)
+ > eyt = Bu))yi(t) = Y cf(t)gi(v(t — Bu(t)))
ki ENs (i) ki €Ns (i)

SP(E) = —Muxf(t) — Moy | 2£(2)|” sen (x{A (1))
—Msj; [x£(8)| " sgn (x{A(t)) — Maj ’Z (¢ — By(t))

jer

sgn (x&4 ( t))

(9)
where jj €, Ac A, 0 <a <1, v>1and Myjj, Majj, M3j;, Myj; are the parameters
that will be determined.
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Time Scal
The generalized pseudo almost periodic in time

Analysis of Qua

Theorem

The network (6) has only one solution in the region T, as soon as the
properties (P1) — (Pa) are fulfilled. Moreover, the of network (6) is
exponentially stable.

Theorem

Assume (P1) hold. If in addition, Myj;, Majj, Msj; and Maj; of the
feedback (9) satisfy

= kIt f
My >—d=+ 3 bL] (10)
i €N (i)
M2ij > 0, M3,'j > 0 and M4,-j > Z C§I+L’-gj, (]_1)
CkleNs(i,j)

for all jj € T. By means of the feedback (9) can reach synchronization
the network (8) at fixed time.
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Exponential stability of Cellular neural networks

Analysis of Quaternion and Clifford neural networks models on generalized osc  Fixed-time synchronization of the system (CV-SICNN)

In particular, for > b,fj‘-ﬁ L,-fj > d~, we have the following corollary
ek €N, (i,))

Corollary

Assume (P1) hold. If in addition, Myj;, Majj, Msj; and Maj; of the
feedback (9) satisfy

My; >0 (12)

Mz,‘j >0 (13)

Mz > 0 (14)

M4,‘j Z Z C;F— Lﬁ, (15)
e €Ns (i j)

for all ij € T. By means of the feedback (9), the system (6) and the
system (7) can reach synchronization at fixed time.
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Simulation of illustrative example

© Simulation of illustrative example
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Simulation of illustrative example

In network (6), let n =2, r =s =1, where © = {0, 1, 2, 12} and

z;i(t) = z,-?-(t)eo + z,~11~(t)e1 + zﬁ(t)ez + z,-Jl-z(t)elg

d11(t) = 32 cos?(1.71t)ey + 0.28 sin(2t)e; — 0.4 cos(2.23t) ey + 0.001sin?(3t)ern
d(t) = 39 |sin(1.41t)| e — 0.5 cos(2t)e; — 0.33 cos?(2.64t)ex + 0.17 sin(t)er2
dia(t) = 33sin?(t)ep — i0.28 cos(5t)e; — 0.255sin3(2.23t)ex + 1.665in%(3t)ern
dx(t) = 37 cos*(1.71t)ey + 0.25sin(7t)e; — 0.33| cos(3.31t)|ex + 0.12sin?(5¢t)er2,

fi1(z) = fi2(z) = 0.4sin(0.252° 4 0.282%)ey — 0.4 |1A0521 + 0.34z2| e
+0.25 cos(0.22%)e; + 0.255in(0.22%) 12
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Simulation of illustrative example

£1(2) = FHo(2) = 0.25 ’o.zwzl + 0.24212‘ ep — 0.175in(0.22° + 0.282'%)e; — 0.4 |1.052% + 0.342% | e, + 0.475in(0.22 ey
_ _ . 0 . 12 } 2 1 . 0
£11(2) = g12(2) = 0.05sin(6.342%)ey — 0.04 sin(1.4212)e; + 0.07sin(0.332% + 0.33z%)ey + 0.04 sin(5.6420 )7,

g — 0.045sin(1.4222 + 20)e; + 0.045in(5.6420)e, — 0.04sin(1.42'2)e;,

21(2) = g22(2) = 0.05 |0.6621 +0.337°

Dy1 () = Dip(t) = 1.41 cos(t)ey + 1.33¢ |t e; +0.47sin(0.5¢)ep — 0.25in(2t)er2

[t

Dp1(t) = Dpp(t) = 0.47sin(0.5t)ey + 0.47 cos(1.41t)e; — 0.2sin(2t)ey + e '"lejn

and k, | = 1,2 € Ny(i, j) forany i =j = 1,2,

bl-ljl(t) - bg.l(t) = 0.33] sin(1.41t)| ey + 0.16 cos(4t)e; + (0.75 cos(2t) + 1)ey + 0.25 cos>(2.23t)e 2,

bl.l/.z(t) - b,?jz(r) = 0.3 cos(t)|ep + 0.17 sin(3t)e; + 0.25 cos(2t)ep + 0.21sin(2t)eqn,

) = cl.zjl(t) = (sin(1.73t) + 3)e + | cos(2.23t)|e; + 2sin>(2.64t)ey + 0.25 cos(2t)ern ,

c;.z(t) = c;z(r) = cos(1.5t)eq + sin(2t)e; + cos> (2.64t)ey + 0.2sin(2t)e1n,
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Simulation of illustrative example

bll b12 b13

b{(_l: bél 52 bg3
/ gl {/§2 bg}
y

’12 C,-1-3

(G % %
G %D
ij

B11(t) = 0.04 cos®(1.41t), [1o(t) = 0.06sin(1.41¢t)
Bo1(t) = 0.02cos?(0.28t), [n(t) = 0.03 cos*(0.24t),
Mlij = 10, M2;j = 5, M3,'j = 67 M4,’j =12.
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Simulation of illustrative example

After all calculations we have
L, =1,=04, L5 =1L5=047
L%, =1L§,=0.07, L5, =15, =0.05
df} =04, df, =166, dyj =05, dj, =033

Yool = Y b= Y b= > b =41

Ck/GNl(l,l) Ck/€N1(1,2) Ck/ENl(Q,l) Ck/€N1(2,2)
kIt kIt kIt k/Jr
E i1 = E G2 = E Q1 = E o =10
€N (1,1) c€N1(1,2) c€N1(2,1) cu€NL(2,2)

d- =32, d" =39, 3=0.16, 3’ =05
Take a = 0.06 > [|#°||. For 1 </,j <2 we have

2
K=-—max{df+ > o 128" 1L + > o 12cf” L% 5 =0.0495 < 1
- ijer
Ck/GN( ) Ck/EN( )
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Simulation of illustrative example

For 1 <i,j <2, take p =3 we have
2 4
24 — | | —
T (3d> (3d>
3

ReidT
+ (1 + f:‘lﬂﬁ) > o0a2cf" 18 =0.1761 < 1,
e €Ns(i.j)

2(dH)° +2 > 0.12b5" L

c€N,(i )

and, for p = 2 we obtain

2
2\? N "
+ kI™ f
max 4 24 (d) 2(df)"+2| > o121
ek €N (i)
1 2
2e2d*f W g
+ <1+ =5 ) > 0a2cf 1k =0.5422 < 1.
e €Ns (i)
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Simulation of illustrative example

For example i =j =1, k,I =1,2 € Ny(1,1),

6%:(1 ) bﬁ(t)fll(zkl(t))le(t) = bﬂ(t)fll(zll(t))zu(t) +

biF(t)fi1(z12(t))z11(t) + b31(t) A1 (221 (t))201(t) + bFF(t) Fa(222(t))z1a (),

Ml,-j:10, M2U:57M3U:67M4ij: 12 R
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Simulation of illustrative example

FIGURE — Curves of z{y(t), zi1(t), z&(t) and z7(t) of (6) with different initial
values.
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Simulation of illustrative example

o1
Zo &
0
osft L
02 |
L
o s w ®

0 s w5 w3 @ 0 s 1
t t

0

FIGURE — Curves of z{,(t), zi5(t), z5(t) and z2(t) of (6) with different initial
values.
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Simulation of illustrative example

D (s
— 518

0
2,015

1.
712‘\51:023

1
7ZZ‘LSI=033

10 ) o 9 ! 0 10 2 k] L) 50
{
T 2.
61 —1,[9-2
v TS 2
- 8t 1, (8017

FIGURE — Curves of z3,(t), z3(t), z&(t) and z37(t) of (6) with different initial

values.
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Simulation of illustrative example

D (6=
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Solving TSP with Hopfield neural networks

Neural Networks for solving some mathematical problem

Plan

© Neural Networks for solving some mathematical problem
@ Numerical solutions of nonlinear differential equation
@ Pseudocode
@ Solving TSP with Hopfield neural networks
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Solving TSP with Hopfield neural networks

Neural Networks for solving some mathematical problem

Application of synchronization of neural network

*Cryptography Using Artificial Neural Network.

Physics Letters A

Volume 356, Issues 4-5, 14 August 2006, Pages 333-338

Cryptography based on delayed chaotic
neural networks *

Wenwu Yu, Jinde Cao & =

Show more

+ Add to Mendeley of Share 9% Cite

https://doi.org/10.1016/j.physleta.2006.03.069 Get rights and content
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Numerical solutions of nonlinear differential equation
al solutions of nonlinear differential equation

Num:
Solving TSP with Hopfield neural networks

Neural Networks for solving some mathematical problem

Mathematical Model| The Problem
ANN Formulation models
Forth Oder Nonlinear Emden-
riiness Finciion (Mean square ) [——] Eticie
Optimization

obal Scheme: GA
Algorithm: S QP
GA-SOP

Local sear
Hybrid Combination:

’Tzi’?‘
; 3

i Valuation

R \> Ne

s S G
G e
>——< GABest wclgh(s>

i
Vatuation

Update the Iterations
= = Bes GA-SQP
Graphical abstract of GA-SQP
1odel Lo Comparison on d
in

1ed Weights OF ANNs
proximarte solutions
Presented Results

et the ap;

nonlinear fourth
me scales and ap

FIGURE — Framework of present methodology for solving the
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Numerical solutions of nonlinear differential equation
Numerical solutions of nonlinear differential equation

Solving TSP with Hopfield neural networks

Neural Networks for solving some mathematical problem

Pseudocode of the optimization scheme of GA-SQP.
GAs process started
Inputs:
The candidate solution with entries equal to

unknown parameters in ANN as: W=[a,f .,y ] where
a=[a,a,&.a,), B=1B:P P B,] and
=727 1

Population: A set of chromosomes shown as:
P=[W, W, W, .. W, .W=a,B.r]
Output: The decision variable of ANN optimized with Ghs
as Wa.g
Initialization
Create W with real bounded numbers. Set of W
vector to make an primary/init population P. Set
s of declaration d Generation of “GA” and
“gaoptimset” functions.
Evaluate Fitness
Attained fitness e of P for each weight vector W with
the use of equations using equation (7) to (9)
Termination

the valu

Terminate the procedure if any of the below condition
meets

e Fitness {e =10"2°}, TolCon = TOlF
. StallGenLimit

n=10-2¢
0, PopulationSize=300

* Generations=60,

er values are default

Go to storage, when the above criteria meet,
Ranking
Ordered individual W in P for excellence of the
fitness
Reproduction

e Selection —”@selectionuniform”.

* Crossovers —"@c soverheuristic”.

e Mutations —”@mutationadaptfeasible”.
e Elitism —On best individual ranked of population

Carry on the step of ‘fitness evaluation’
Storage
save Wa.gas

ess e, time generation and count of
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Solving TSP with

Neural Networks for solving some mathematical problem

Since the early 1980s, neural technologies have shown interesting
potential for the solving optimization problems. They present in this
field, two major advantages : the first lies in the fact that some
neural algorithms often solve very well optimization issues;

The second comes from the fact that these algorithms are
particularly suitable for problems that require extremely short
response times. In our work we go focus more specifically on the
application of the Hopfield neural network.

Hopfield neural networks are networks with energy minimization,
they are composed of neurons fully connected, they evolve from a
state initial.

They can be used to solve any combinatorial optimization problem,
such as that of the traveling salesman, on the condition of deftly
modeling the problem.

The evolution of the network state is based on the minimization of
the energy function of the system. So it lends itself very well good at
solving optimization problems.
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Solving TSP with

Neural Networks for solving some mathematical problem

@ For the optimization, we use the network of the following way : from
an initial state, we leave the network evolve freely up to an
attractor, which is typically, for optimization problems, a state stable
independent of time (a fixed point of the dynamics). We then says
that the network has converged : convergence is reached when the
outputs of the neurons no longer evolve.

@ The dynamics of the network are generally asynchronous : between
two instants of time, a single neuron, chosen randomly, is update; in
other words, its potential is calculated, and its output re-evaluated
accordingly.

@ When these networks are used to solve problems optimization, the
weights of the connections are determined analytically from the
formulation of the problem; in general, this is done directly from the
function energy associated with the problem. In addition, the
outputs of neurons, in the attractor towards which the network
converges, encode a solution to the optimization problem.
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Neural Networks for solving some mathematical problem

Codage (Traveling Salesman problem)

Etape 1 | Etape 2 | Etape 3 | Etape 4 | Etape 5 | Etape 6
Ville A 1 0 0 0 0 1
Ville B 0 1 0 0 0 0
Ville C 0 0 1 0 0 0
Ville D 0 0 0 1 0 0
Ville E 0 0 0 0 1 0
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Neural Networks for solving some mathematical problem

Let V/(x, i) is the output of neuron in the position (x, i) of our matrice.

Er=> > > V(xi)- V(x,))

x 0 g
= 33 Vi) Vi)
i X y#X

= (Z V(x, i) —

E4—ZZZ[de (V(Y7’+1)+V(ya’_1))]

X y#x i
E:—a-El—beg—c-E3—d-E4,

with (a, b, c,d) € R*.
Identification of the energie E with the Hopfield energie.
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Nume lutions of nonlinear differential equation
Numel | solutions of nonlinear differential equation
Solving TSP with Hopfield neural networks

Neural Networks for solving some mathematical problem

Thank you for your attention
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