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Université Côte d’Azur, Nice, France

didier.auroux@univ-cotedazur.fr

Observers for data assimilation

and parameter estimation

Control Theory and Inverse Problems Monastir, May 8-10, 2023



Talk overview

1. Nudging and observers

2. Back and Forth Nudging algorithm

3. Diffusive BFN algorithm

4. Parameter estimation

Observers for data assimilation and parameter estimation, Didier Auroux, May 10 2023 1/81



Data assimilation

t

Observations

Model

combination

model + observations

⇓

identification of the state (and/or

parameters) of a geophysical system

— 4D-VAR : optimal control method, based on the minimization of the

discrepancy between the model solution and the observations.

— Sequential methods : Kalman filtering, ensemble Kalman filters, . . .

— Hybrid methods : En-4DVar, 4D-EnVar, . . .

— Observer approach : Nudging, Back and Forth Nudging, more complex

observers, . . .
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Forward nudging

Let us consider a model governed by a system of ODE :

dX

dt
= F (X), 0 < t < T,

with an initial condition X(0) = x0.

Y(t) : observations of the system

H : observation operator.




dX

dt
= F (X)+K(Y −H(X)), 0 < t < T,

X(0) = X0,

where K is the nudging (or gain) matrix.

In the linear case (where F is a matrix), the forward nudging is called

Luenberger or asymptotic observer.
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Forward nudging

— Meteorology : Hoke-Anthes (1976)

— Oceanography (QG model) : De Mey et al. (1987), Verron-Holland

(1989)

— Atmosphere (meso-scale) : Stauffer-Seaman (1990)

— Optimal determination of the nudging coefficients :

Zou-Navon-Le Dimet (1992), Stauffer-Bao (1993),

Vidard-Le Dimet-Piacentini (2003)

Lakshmivarahan-Lewis (2011)
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Variational interpretation

Model equation with nudging :

dX

dt
= FX +K(Y −HX)

Implicit discretization, with Xn at time n and Xn+1 at time n+ 1 :

Xn+1 −Xn

∆t
= FXn+1 +K(Yn+1 −HXn+1).

Xn+1 is solution of the following equation :

X −Xn = ∆t FX +∆tK(Yn+1 −HX)

Assume that

K = kHTR−1

where R is the covariance matrix of the errors of observations.
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Variational interpretation

X −Xn = ∆t FX + k∆tHTR−1(Yn+1 −HX)

Assume the model F is derived from an energy principle.

Variational interpretation : direct nudging is a compromise between the

minimization of the energy of the system and the quadratic distance to the

observations :

min
X

[
1

2
〈X −Xn, X −Xn〉−

∆t

2
〈FX,X〉+ k

∆t

2
〈R−1(Yn+1 −HX),Yn+1 −HX〉

]
,

Example :

Heat equation F = ∆ (Laplacian), and the energy is −〈∆X,X〉 = ‖∇X‖2.
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Sequential interpretation

It is also possible to give a sequential interpretation of the standard nudging

algorithm by seeing it as a Kalman filter. Indeed, when no observations are

available, the nudging method simply consists of solving the model equations,

like Kalman filters.

On the other hand, when some observations are available, in both nudging and

Kalman filters, the model solution is corrected by the innovation vector, i.e.

the difference between the observations and the corresponding model state.

If at any time, the nudging matrices are set in an optimal way, then the standard

nudging method is equivalent to the standard Kalman filter. In the other cases,

it can be seen as a suboptimal Kalman filter.
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Nudging : convergence in the linear case

Luenberger observer, or asymptotic observer [Luenberger, 1966]





dXtrue

dt
= FXtrue, Y = HXtrue,

dX

dt
= FX+K(Y −HX).

d

dt
(X −Xtrue) = (F−KH)(X −Xtrue)

If F − KH is a Hurwitz matrix, i.e. its spectrum is strictly included in the

half-plane {λ ∈ C;Re(λ) < 0}, then X → Xtrue when t → +∞.

Pole assignment method : (or pole placement) [Arnold and Datta 1988]

If a system (F,H) is observable, then there exists a matrix K such that

F −KH is stable, i.e. all eigenvalues have a strictly negative real part.

⇒ in this case, it is possible to find a nudging matrix K that makes the nudging

solution converge towards the true state.
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Nudging : linear case example

Simple example : consider the following ODE in R
2 :

ẋ(t) =


 1 1

1 1


x(t)

The characteristic polynomial of the model matrix F is :

det(λI − F ) = (λ− 1)2 − 1 = λ2 − 2λ

and the eigenvalues are 0 and 2.

We assume that the first component of x is observed : H = (1 0). Then we

are looking for a gain matrix

K =


 k1

k2




such that F −KH has negative eigenvalues.
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Nudging : linear case example

F −KH =


 1− k1 1

1− k2 1




and the characteristic polynomial is :

det(λI− (F −KH)) = (λ−1+k1)(λ−1)−1+k2 = λ2+(k1−2)λ+(k2−k1).

Choose for instance k1 = 4 and k2 = 5, which leads to the polynomial

λ2+2λ+1, and the eigenvalues of F −KH are now −1 and −1 : they are both

strictly negative (or of strictly negative real part), and the nudging system is

now stable.

In this case, the error asymptotically decreases in time : E(t) = e−tE0.
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Nudging : linear case example

Numerical tests on this example : Xtrue,0 = [1;−2], X0 = [1; 0].
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Case 1 : k1 = 2 and k2 = 2 ⇒ eigenvalues 0 and 0 ;

Case 2 : k1 = 4 and k2 = 5 ⇒ eigenvalues −1 and −1 ;

Case 3 : k1 = 6 and k2 = 10 ⇒ eigenvalues −2 and −2.
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Nudging : non-linear case

Luenberger observer for nonlinear models :

We consider a reference trajectory of a nonlinear system given by

dXtrue

dt
= FXtrue +G(Xtrue),

where F is the linear part of the model, and G is a nonlinear function, assumed

to be differentiable and Lipschitz :

‖G(X1)−G(X2)‖ ≤ L‖X1 −X2‖, ∀ X1, X2,

where L > 0 is a Lipschitz constant.

We assume that the system is observed : Y = HXtrue, and that (F,H) is

observable. Then we know that there exists a matrix K such that F −KH is

a stable matrix.
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Error equation

We introduce the following observer equation :

dX

dt
= FX +G(X) +K(Y −HX) = FX +G(X) +KH(Xtrue −X).

This is the standard Luenberger observer (or nudging method).

Let E = X − Xtrue be the error (difference between the observer and true

trajectories). Then E satisfies the following equation :

dE

dt
= FX +G(X) +KH(Xtrue −X)− FXtrue −G(Xtrue)

= (F −KH)E +G(X)−G(Xtrue)
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Error decrease

1

2

d‖E‖2

dt
= E.

dE

dt
= E. ((F −KH)E) + E. (G(X)−G(Xtrue))

≤ λmax‖E‖2 + ‖E‖ ‖G(X)−G(Xtrue)‖ ≤ (λmax + L)‖E‖2.

Then if K is chosen such that all the eigenvalues of F −KH are (of real part)

strictly smaller than −L, the opposite of the Lipschitz constant of G, then the

square norm of the error decreases asymptotically in time.

And then X → Xtrue when time goes to infinity.
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Non-linear example

Example : Lorenz system





ẋ = σ(y − x),

ẏ = ρx− y − xz,

ż = xy − βz,

with standard values of parameters σ = 10, ρ = 28 and β = 8
3 for a chaotic

behavior.
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Lorenz : model decomposition

The model can be decomposed in a linear part, and a nonlinear part :

dX

dt
= FX +G(X),

with

X =




x

y

z


 , F =




−σ σ 0

ρ −1 0

0 0 −β


 , G(X) =




0

−xz

xy


 .

Assuming that all considered trajectories are bounded (see previous figure),

then the function G is Lipschitz.

Then we can define the following Luenberger observer :

dX

dt
= FX +G(X)+KH(Xtrue −X).
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Lorenz : observability conditions

If we choose H = (1 ; 0 ; 1) :

Then HF = (−σ ; σ ; −β), and HF 2 = (σ2 + ρσ ; −σ2 − σ ; β2).

As the matrix (H;HF ;HF 2) is invertible, then (F,H) is observable, and we

can place the poles of F : there exists K such that F −KH is stable.

With H = (1 ; 0 ; 0) or H = (0 ; 1 ; 0), the system is not observable, and

then it is not possible to place the poles anywhere, but it is still possible to

find K such that F −KH is stable.

For instance with H = (1 ; 0 ; 0) and K = (0 ; ρ ; 0)T ,

F −KH =




−σ σ 0

0 −1 0

0 0 −β




3 negative eigenvalues : −1, −β and −σ.
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Lorenz : non-linear observer

Another possible observer :





ẋ = σ(y − x),

ẏ = ρxtrue − y − xtruez,

ż = xtruey − βz,

which can be rewritten as




ẋ = σ(y − x),

ẏ = ρx− y − xz+ρ(xtrue − x)−z(xtrue − x),

ż = xy − βz+y(xtrue − x),

Only x is observed, and compared to the previous example with K = (0; ρ; 0)T ,

there is an additional term : (0 ; −z ; y)TH(Xtrue −X)
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Lorenz : non-linear observer

Then the error E = X −Xtrue is solution of the following ODE :

dE

dt
= (F −KH)E + S(t)E,

with

F −KH =




−σ σ 0

0 −1 0

0 0 −β


 ,

and where S(t) is the following matrix :

S(t) =




0 0 0

0 0 −xtrue(t)

0 xtrue(t) 0



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Spectral decomposition

Let us compute the eigenvalues of F−KH−S(t) : the characteristic polynomial

is

(λ+ σ)(λ2 + λ(1 + β) + (β + xtrue(t)
2).

As β > 0 and σ > 0, for any value of xtrue(t), all three eigenvalues are strictly

negative, or their real parts are strictly negative, and then the error decreases

asymptotically in time.
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Numerical tests

Numerical experiment on this example :

Xtrue(0) = [5;−5;−4] and X(0) = [−5; 5; 4].
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Numerical tests

Convergence of y and z also :

0 0.5 1 1.5 2 2.5 3
−30

−20

−10

0

10

20

30

40

True state

No nudging

Nudging

0 0.5 1 1.5 2 2.5 3
−10

0

10

20

30

40

50

60

True state

No nudging

Nudging

Observers for data assimilation and parameter estimation, Didier Auroux, May 10 2023 23/81



Numerical tests
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Evolution of the norm of the error between Xnudging and Xtrue versus time

(largest eigenvalue ≃ −1).
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More complex observers

If the model has more than one variable (or if all components are not observed),

the standard nudging only corrects the observed variables with themselves.

⇒ extension to more complex observers, in which non observed variables are

controlled by observed ones.

Example on a 2D shallow water model :




∂h

∂t
= −∇ · (hv),

∂v

∂t
= −(v · ∇)v − g∇h

on a square domain with rigid boundaries and no-slip lateral boundary condi-

tions. These equations are derived from Navier-Stokes equations, assuming the

horizontal scale is much greater than the vertical one ⇒ conservation of mass

and of momentum.

Can we identify/correct both variables (height and velocity) if only the water

height h is observed ?
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Observer design

Any non-linear observer for this model writes :




∂h

∂t
= −∇ · (hv)+Fh(hobs, v, h),

∂v

∂t
= −(v · ∇)v − g∇h+Fv(hobs, v, h),

where F = 0 when the estimated height h is equal to the observed height hobs.

Formal requirements : symmetry preservation (invariance to translations and

rotations of the model, and then of the observer), smoothing by convolution

(noisy data), local stability (strong asymptotic convergence of the linearized

error system)

Most simple observer that should work : (smallest order of derivative)

Fh = ϕh ∗ (h− hobs), Fv = ϕv ∗ ∇(h− hobs)

with simple invariant kernels :

ϕ(x, y) = β exp(−α(x2 + y2)).
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Convergence study

Convergence on the linearized system : let δh and δv be the perturbations

around the reference state, and let h̃ = δh− δhtrue and ṽ = δv − δvtrue be the

estimation errors, solutions of

∂h̃

∂t
= −h̄ ∇ · ṽ−ϕh ∗ h̃,

∂ṽ

∂t
= −g∇h̃−ϕv ∗ ∇h̃.

Eliminating ṽ yields a modified damped wave equation with external viscous

damping :

∂2h̃

∂t2
= gh̄∆h̃+h̄ ϕv ∗∆h̃− ϕh ∗

∂h̃

∂t
.
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Convergence study

Theorem : If ϕv and ϕh are defined by ϕ(x, y) = β exp(−α(x2 + y2)) with

βv, βh, αv, αh > 0, then the first order approximation of the error system around

the equilibrium (h, v) = (h̄, 0) is strongly asymptotically convergent. Indeed if

we consider the following Hilbert space and norm : H = H1(Ω)× L2(Ω),

‖(u,w)‖H =

(∫

Ω

‖∇u‖2 + |w|2
)1/2

,

then

lim
t→∞

∥∥∥∥

(
h̃(t),

∂h̃

∂t
(t)

)∥∥∥∥
H

= 0 .

This theorem proves the strong and asymptotic convergence of the error h̃

towards 0, and then it also gives the same convergence for ṽ. We deduce that

the observer tends to the true state when time goes to infinity.

Proof : based on Fourier decomposition of the solution.
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Numerical tests
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h, longitudinal velocity vx and transversal velocity vy.
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Numerical tests : non-linear model
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N-d compressible Navier-Stokes

Compressible Navier-Stokes equation :




ρt +∇ · (ρu) = 0,

ρ[ut + (u · ∇)u] = −∇p(ρ) + µ∆u+ (λ+ µ)∇(∇ · u),

where p(ρ) = ργ , µ > 0, λ+ 2µ
3 ≥ 0.

Space domain : [0, 1]n with periodic conditions ; Time domain : [0, T ].

Observers system :




ρ̂t +∇ · (ρû) = Fρ(ρ̂, û, u),

ρ[ût + (û · ∇)û] = −∇p(ρ̂) + µ∆û+ (λ+ µ)∇(∇ · û)+Fu(ρ̂, û, u),

with Fρ(ρ̂, û, u) = ϕρ ∗Dρ(u− û), Fu(ρ̂, û, u) = ϕu ∗Du(u− û), and Dρ and

Du are differential (or integral) operators.
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N-d compressible Navier-Stokes

Theorem - linear system : For any d > 0, for any K > 0, one can find

ϕρ(x) and ϕu(x) such that the maximal decay rate of the errors on density and

velocity towards 0 is at least d for any Fourier mode k such that |k| ≤ K. The

following values can be chosen :

ϕu0 = d , ϕρ0 = 0 , (1)

ϕuk = max{0; d− c1|k|
2; 2d− (c1 + c2)|k|

2)} , 0 < |k| ≤ K , (2)

ϕρk = max

{
0;

(
(c1 + c2)|k|

2 + ϕuk

)2

4c5|k|2
− 1

}
, 0 < |k| ≤ K , (3)

ϕuk = 0 , ϕρk = 0 , |k| > K . (4)

Proof based on Fourier decomposition of the solutions and spectral analysis

of the coupled system. Note that we get explicit Fourier coefficients of the

convolution kernels.

Similar results with density observations, and explicit decay rate calculation in

case of nudging (no convolution, no correction of non-observed variables)
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Numerical results on 1-d CNS
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Numerical results on 1-d CNS
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Image driven by CNS

Observer design for tracking an image driven by compressible Navier-Stokes :

Density, velocity, and passive tracer (image)

ρ̂t +∇ · (ρ̂û) = Fρ(Ī , Î)

ρ̂[ût + (û · ∇)û] = −γρ̂γ−1∇ρ̂+ µ∆û+ λµ∇(∇ · û)+Fu(Ī , Î)

Ît +∇ · (ûÎ) = FI(Ī , Î).

where Ī is the observed image.
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Image driven by CNS

Using the following observers :

Fρ(Ī , Î) = ϕρ ∗ (Ī − Î)

Fu(Ī , Î) = −ρ0ϕu ∗ ∇(Ī − Î)

FI(Ī , Î) = ϕI ∗ (Ī − Î)

we can study the eigenvalues of the linearized equations :




0 c4|k|
2 ϕρ

−c3 (−c1 + c2)|k|
2 −2πiϕu

0 c6|k|
2 −ϕI




and find optimal Fourier coefficients of the kernels ϕ in order to control all

Fourier modes (up to any maximum mode |k| ≤ K) at any desired decay rate.

We can also use constant coefficients ( standard nudging) and get a minimal

decay rate for all Fourier modes.
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Image driven by CNS

Example of decay of the error (on all variables) versus time, for a given mode

in 2D :

Observers for data assimilation and parameter estimation, Didier Auroux, May 10 2023 37/81



⇒

1. Nudging and observers

2. Back and Forth Nudging algorithm

3. Diffusive BFN algorithm

4. Parameter estimation

Observers for data assimilation and parameter estimation, Didier Auroux, May 10 2023 38/81



Backward nudging

How can we recover the initial state from the final solution ?

Backward model :





dX̃

dt
= F (X̃), T > t > 0,

X̃(T ) = X̃T .

If we apply nudging to this backward model :





dX̃

dt
= F (X̃)−K(Y −HX̃), T > t > 0,

X̃(T ) = X̃T .
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BFN : Back and Forth Nudging algorithm

Iterative algorithm (forward and backward resolutions) :

X̃0(0) = Xb (first guess)





dXk

dt
= F (Xk)+K(Y −H(Xk))

Xk(0) = X̃k−1(0)





dX̃k

dt
= F (X̃k)−K ′(Y −H(X̃k))

X̃k(T ) = Xk(T )

If Xk and X̃k converge towards the same limit X, and if K = K ′, then X

satisfies the state equation and fits to the observations.
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Choice of the direct nudging matrix K

Implicit discretization of the direct model equation with nudging :

Xn+1 −Xn

∆t
= FXn+1 +K(Y −HXn+1).

Variational interpretation : direct nudging is a compromise between the mini-

mization of the energy of the system and the quadratic distance to the obser-

vations :

min
X

[
1

2
〈X −Xn, X −Xn〉 −

∆t

2
〈FX,X〉+

∆t

2
〈R−1(Y −HX),Y −HX〉

]
,

by choosing

K = HTR−1

where R is the covariance matrix of the errors of observation.
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Choice of the backward nudging K
′

The feedback term has a double role :

• stabilization of the backward resolution of the model (irreversible sys-

tem)

• feedback to the observations

If the system is observable, i.e. rank[H,HF, . . . ,HFN−1] = N , then there

exists a matrix K ′ such that −F −K ′H is a Hurwitz matrix (pole assignment

method).

Simpler solution : one can define K ′ = k′HTR−1, where k′ is e.g. the smallest

value making the backward numerical integration stable.
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Example of convergence results

Viscous linear transport equation :




∂tu− ν∂xxu+ a(x)∂xu = −K(u− uobs), u(x, t = 0) = u0(x)

∂tũ− ν∂xxũ+ a(x)∂xũ = K ′(ũ− uobs), ũ(x, t = T ) = uT (x)

We set w(t) = u(t)− uobs(t) and w̃(t) = ũ(t)− uobs(t) the errors.

• If K and K ′ are constant, then ∀t ∈ [0, T ] : w̃(t) = e(−K−K′)(T−t)w(t)

(still true if the observation period does not cover [0, T ])

• If the domain is not fully observed, then the problem is ill-posed.

Error after k iterations : wk(0) = e−[(K+K′)kT ]w0(0)

 exponential decrease of the error, thanks to :

• K +K ′ : infinite feedback to the observations (not physical)

• T : asymptotic observer (Luenberger)

• k : infinite number of iterations (BFN)
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Observability condition

Let χ(x) be the time during which the characteristic curve wi th foot x lies

in the support of K. Then the system is observable if and onl y if min
x

χ(x) > 0.

Partial observations in space : half of the domain is observed.
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Shallow water model

∂tu− (f + ζ)v + ∂xB =
τx

ρ0h
− ru+ ν∆u

∂tv + (f + ζ)u+ ∂yB =
τy

ρ0h
− rv + ν∆v

∂th+ ∂x(hu) + ∂y(hv) = 0

• ζ = ∂xv − ∂yu is the relative vorticity ;

• B = g∗h+
1

2
(u2 + v

2) is the Bernoulli potential ;

• g∗ = 0.02 m.s−2 is the reduced gravity ;

• f = f0 + βy is the Coriolis parameter (in the β-plane approximation), with

f0 = 7.10−5 s−1 and β = 2.10−11 m−1.s−1 ;

• τ = (τx, τy) is the forcing term of the model (e.g. the wind stress), with a

maximum amplitude of τ0 = 0.05 s−2 ;

• ρ0 = 103 kg.m−3 is the water density ;

• r = 9.10−8 s−1 is the friction coefficient.

• ν = 5 m2.s−1 is the viscosity (or dissipation) coefficient.
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Shallow water model

2D shallow water model, state = height h and horizontal velocity (u, v)

Numerical parameters :

Domain : L = 2000 km × 2000 km ;

Rigid boundary and no-slip BC ;

Time step = 1800 s ;

Assimilation period : 15 days ;

Forecast period : 15 + 45 days

Observations : of h only (∼ satellite obs),

every 5 gridpoints in each space direction,

every 24 hours.

(run example)

Background : true state one month before the beginning of the assimilation

period + white gaussian noise (∼ 10%)
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Shallow water model

BFN

(5 iter.)

True

state

(BFN vs 4DVAR)

4DVAR

(5 iter.)

Back-

ground

Comparison BFN - 4DVAR : height h

Observers for data assimilation and parameter estimation, Didier Auroux, May 10 2023 47/81


film_h.avi
Media File (video/avi)



SWOT observations on a QG model

SWOT (Surface Water Ocean Topography) satellite mission (expected to be

launched in 4 months), expected to provide SSH with a swath wide of 120km

and repeat period of 21 days

SWOT satellite SSH data coverage

after 5, 10 and 21 days.
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SWOT observations on a QG model

Thanks to LaSalle’s invariance principle, we can define a Lyapunov function

that asymptotically decreases towards 0 when time goes to infinity. This

ensures the theoretical convergence of the BFN. Moreover, the convergence

rate is not impacted by data time frequency :

Lyapunov function versus time during 10 BFN iterations, with space-complete

and time-sampled data (1 observation every 10 or 150 time steps)
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SWOT observations on a QG model

Results with SWOT-like noisy data :

Convergence of BFN on SWOT-like noisy observations ; exact and assimilated

SSH after 21 days
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BF-reduced Kalman filter

Numerical configuration :

• Shallow water model (2D), domain : 2000× 2000 km

• Assimilation window : 30 days, daily assimilation

• SSH observation lines along Topex/Poseidon ground tracks

• 4 iterations of BF-SEEK : back and forth reduced Kalman filter (propa-

gation of low rank approximations of the covariance matrices, assuming

the initial ones are low rank)

• But no dynamical propagation of the errors (still in progress) ( SEEK

≃ optimal interpolation)

Observers for data assimilation and parameter estimation, Didier Auroux, May 10 2023 51/81



BF-SEEK

Example of assimilated data every day
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BF-SEEK

Identified SSH (left) and “true” SSH (right) after : 0 iteration of BF-SEEK
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BF-SEEK

Identified SSH (left) and “true” SSH (right) after : 2 iterations of BF-SEEK
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BF-SEEK

Identified SSH (left) and “true” SSH (right) after : 4 iterations of BF-SEEK
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BF-SEEK
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Evolution of the RMS error on the SSH during the BF-SEEK iterations.
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Diffusion problem

Backward model and diffusion :

The main issue of the BFN is : how to handle diffusion processes in the

backward equation ?

Let us consider only diffusion : heat equation (in 1D)

∂tu = ∂xxu

The backward nudging model will be :

∂tũ = ∂xxũ+K(ũ− uobs)

from time T to 0. By using a change of variable t′ = T − t, we can rewrite the

backward model as a forward one :

∂t′ ũ = −∂xxũ−K(ũ− uobs),

and we can see that even if the nudging term stabilizes the model, the backward

diffusion is a real issue (unbounded eigenvalues, except for discrete Laplacian).
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Diffusion problem

Hopefully, in geophysical problems, diffusion is not a dominant term. The

model has smoothing properties, and diffusion is small → diffusion processes

are not highly unstable in backward mode, even if the model is clearly unstable

without nudging.

Theoretically, there is a problem :

• Viscous linear transport equation : if the support of K is a strict

sub-domain (i.e. some parts of the space domain are not observed),

there does not exist a solution to the backward model, even in the

distribution sense.

• Viscous Burgers equation : even if K is constant (in time and space

⇒ full observations), the backward equation is ill-posed, as there is no

stability (or continuity) with respect to the initial condition.

Without viscosity, one can prove the convergence of the BFN on these equa-

tions.
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⇒

1. Nudging and observers

2. Back and Forth Nudging algorithm

3. Diffusive BFN algorithm

4. Parameter estimation
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Diffusive BFN

Diffusive free equations in the geophysical context :

In meteorology or oceanography, theoretical equations are usually diffusive

free (e.g. Euler’s equation for meteorological processes).

In a numerical framework, a diffusive term is added to the equations (or

a diffusive scheme is used), in order to both stabilize the numerical inte-

gration of the equations, and take into consideration some subscale phenomena.

Example : weather forecast is done with Euler’s equation (at least in Météo

France. . .), which is diffusive free. Also, in quasi-geostrophic ocean models,

people usually consider ∇4 or ∇6 for dissipation at the bottom, or for vertical

mixing.
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Diffusive BFN

Non viscous model - artificial diffusion term :

∂tX = F (X)+ν∆X, 0 < t < T,

where F has no diffusive terms, ν is the diffusion coefficient, and we assume

that the diffusion is a standard second-order Laplacian (could be a higher

order operator).

We introduce the D-BFN algorithm in this framework, for k ≥ 1 :



∂tXk = F (Xk)+ν∆Xk+K(Y −H(Xk)),

Xk(0) = X̃k−1(0), 0 < t < T,




∂tX̃k = F (X̃k)−ν∆X̃k−K ′(Y −H(X̃k)),

X̃k(T ) = Xk(T ), T > t > 0.

This backward equation can be rewritten in forward mode (t′ = T − t) :

∂t′X̃k = −F (X̃k)+ν∆X̃k+K ′(Y −H(X̃k)), X̃k(t
′ = 0) = Xk(T ),

which can easily be solved (only the physical model has an opposite sign).
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Linear transport - smoothing equation

If we apply the D-BFN algorithm to a linear transport equation (model F ) :

∂tu+ a(x) ∂xu = 0, t ∈ [0, T ], x ∈ Ω, u(t = 0) = u0,

that we will solve numerically with a small diffusion term (for stability and

subscale modelling), then the D-BFN algorithm converges. At the limit k → ∞,

uk and ũk tend to u∞(x) solution of

ν∂xxu∞ +K(u0
obs(x)− u∞) = 0,

or equivalently

−
ν

K
∂xxu∞ + u∞ = u0

obs.

This equations is well known in signal or image processing, as being the

standard linear diffusion restoration equation. In some sense, u∞ is the

result of a smoothing process on the observations uobs, where the degree of

smoothness is given by the ratio ν
K .
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Linear transport - DBFN

(DBFN on linear transport)
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Linear transport - DBFN
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Shallow water model

BFN

(5 iter.)

4DVAR

(50 iter.)

DBFN

(5 iter.)

True

state

Initial condition (sea surface height) identified by : BFN (5 iterations, converged),

DBFN (5 iterations, converged), 4DVAR (50 iterations, converged), true solution.
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Shallow water model
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Full primitive ocean model

Primitive equations : Navier-Stokes equations (velocity-pressure), coupled

with two active tracers (temperature and salinity).

Momentum balance :

∂Uh

∂t
= −

[
(∇∧ U) ∧ U +

1

2
∇(|U |2)

]

h

− f.z ∧ Uh −
1

ρ0
∇hp+DU + FU

Incompressibility equation : ∇.U = 0

Hydrostatic equilibrium :
∂p

∂z
= −ρg

Heat and salt conservation equations :
∂T

∂t
= −∇.(TU) +DT + FT (+ same for S)

Equation of state : ρ = ρ(T, S, p)
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Full primitive ocean model

Free surface formulation : the height of the sea surface η is given by

∂η

∂t
= −divh((H + η)Ūh) + [P − E]

The surface pressure is given by : ps = ρgη.

This boundary condition is then used for integrating the hydrostatic equili-

brium and calculating the pressure.

Numerical experiments : double gyre circulation confined between closed

boundaries (similar to the shallow water model). The circulation is forced by a

sinusoidal (with latitude) zonal wind.

Twin experiments : observations are extracted from a reference run, ac-

cording to networks of realistic density : SSH is observed similarly to TO-

PEX/POSEIDON, and temperature is observed on a regular grid that mimics

the ARGO network density.
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Full primitive ocean model

Example of observation network used in the assimilation : along-track altimetric

observations (Topex-Poseidon) of the SSH every 10 days ; vertical profiles of

temperature (ARGO float network) every 18 days.
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Numerical results
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Numerical results
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D-BFN (nudging terms in the temperature and SSH equations only), with “realistic”

SSH observations (T/P track + 15% noise).
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Numerical results

Evolution of the errors during the Back and Forth iterations and during the forecast

phase. In black : evolution of the error for the control and direct nudging experiments.

Observers for data assimilation and parameter estimation, Didier Auroux, May 10 2023 72/81



⇒

1. Nudging and observers

2. Back and Forth Nudging algorithm

3. Diffusive BFN algorithm

4. Parameter estimation
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P-BFN : parameter estimation

Let assume now that the parameter a(x) of the transport equation is unknown.

We want to estimate both the model state u and parameter a. We add an ad

hoc equation for the time independent parameter :




∂tu(t, x) + a(x)∂xu(t, x) = 0, u(0, x) = u0(x),

∂ta(t, x) = 0, a(0, x) = a(x).

Then we apply the BFN algorithm to this coupled system, and we add feedback

terms to both equations, using only observations on the state u :




∂tû(t, x) + â(t, x)∂xû(t, x) = Ku(uobs(t, x)− û(t, x)),

∂tâ(t, x) = KaF(uobs(t, x)− û(t, x)),

where F is a feedback function involving spatial differential operators, such

that there exists a Lyapunov function that decreases in time.

Then, we can prove that both u and a can be reconstructed.
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P-BFN - Transport equation

State Parameter

(P-BFN on linear transport)
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P-BFN - Transport equation
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P-BFN - QG model with SWOT data

Back to QG model, with SWOT data

Parameter : phase speed c (or barotropic deformation wavenumber κ = f2

c2 )

SSH error with : true parameter, wrong parameter.
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P-BFN - QG model with SWOT data

SSH error with a jointly estimated parameter ; Parameter error.
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Conclusions

Back and Forth Nudging algorithm :

• Easy implementation (no linearization, no adjoint state, no minimiza-

tion process)

• Very efficient in the first iterations (faster convergence)

• Lower computational and memory costs than other DA methods

• Stabilization of the backward model

• Excellent preconditioner for 4D-VAR (or Kalman filters)

Diffusive BFN algorithm :

• Converges even faster, with smaller backward nudging coefficients

• Still produces very precise forecasts

Parameter estimation BFN algorithm :

• Efficient estimation of model parameters at almost no additional

computational cost

• But the feedback term on the parameter is equation dependent  in-

crease of the human brain cost
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Perspectives

Extension to more (but not too) complex Back and Forth Observers :

• Observers for a coupled system (image + compresible Navier-Stokes) :

reconstruction of density and velocity fields from image measurements

• Use of physical considerations : e.g. geostrophic equilibrium (Coriolis

force ≃ pressure gradient) to correct non observed variables

Extension to parameter estimation :

• Add an equation for the parameter (e.g. dα
dt = 0), observe the physical

variables, and try to build an observer that corrects all variables

(including the parameter)

• Use of observers in a similar way as Kalman filtering for parameter esti-

mation ( Fourier decompositions, energy estimates, Lyapunov theory,

. . .)
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Thank you for your

attention !
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