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Delay in ODEs and PDEs

Delayed ordinary differential equations or delayed partial
differential equations have been formulated since the past
century in different fields of science to describe phenomena
that depend not only on the present state but also on some
past occurrences.

Pinney (1958), Driver (1977),

Stéphan (1989), Fowler (1997), Murray (2002) Beuter et al
(2003),

Hale et Verduyn (1993), Pruβ (1993), Diekmann et al (1995),
Chandrasekharaiah (1998), Bàtkai and Piazzera (2005) .

All these studies show that the delay leads to instabilities
(mechanical vibrations, loss of synchronization, etc.).
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Delay in ODEs and PDEs

Biology and population dynamics:
70s of the 20th century: in the modeling of evolution of
populations, in the progression of an epidemic or the dynamics of a
cell cycle. Delay taken into account.

Physics and mechanics:
Any system that has a control device is almost sure to show delays;
these delays are unavoidable because a finite time is needed to
detect the information and to react to it. Small delay. Delay
ignored.
In recent years

It is the progress of our computers and our simulation
techniques that have allowed the study of DPDEs formulated
long before but which were impossible to solve.

New fields of research have also emerged where DPDEs play a
fundamental role (nonlinear optics, urban traffic, robotics, ...).
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Delay in ODEs and PDEs

A simple example of ODE with delay

The following model describing the evolution of a population N

N ′(t) = kN(t), N(0) = N0.

Such equation is solved by

N(t) = ektN(t0).

The knowledge of the present (here N(0) = N0) allows the
prediction of the future at any time t. The past is not involved in
the solution.
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Delay in ODEs and PDEs

A simple example of ODE with delay

If we take into account the gestation period:

N ′(t) = kN(t − τ), N(t) = N0(t) − τ ≤ t ≤ 0, DE (1)

The delay τ > 0: the gestation time (τ = 9 months) for the
human population.

For t ∈ [0, τ [,

N(t) = N(0) + k

∫ t

0
N0(s)ds.

We can then solve the system (1) on the interval [τ, 2τ [ and
so on we can solve (1) on [0,+∞[.
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Delay in ODEs and PDEs

Heat equation (Fourier’s law)

Heat conduction:

θt + γ div q = 0

θ: temperature , q: heat flux vector
Fourier’s law,

q(x , t) = −k∇θ(x , t)

Classical heat equation

θt = kγ∆θ.

Commonly used for description of heat conduction. Fourier’s law
assumes heat flux and temperature gradient become established
immediately.

Exponentially stable.

Physical impossibility of infinite propagation speed.
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Delay in ODEs and PDEs

Correction: Cattaneo’s law

Morse and Feshbach, 1953; Vernotte, 1958; Cattaneo, 1958:

τ
∂q

∂t
+ q = −k∇θ

τ represents the relaxation time.

Leads to a damped wave equation :

τθtt + θt = γk∆θ.

Exponential stability.
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Delay in ODEs and PDEs

Single-phase-lag constitutive law:

(Tzou 1997):

q(x , t + τ) = −k∇θ(x , t)

where τ > 0 is a small relaxation parameter (defined as below).

⇒
θt(x , t) = kγ∆θ(x , t − τ).

Ill-posed.

First order approximation (τ = 0): Fourier’s law.

Second order approximation: Cattaneo’s law.
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Delay in ODEs and PDEs

Two delayed PDEs

θt(x , t) = kγ∆θ(x , t − τ) (parabolic),

utt(x , t) = α∆u(x , t − τ) (hyperbolic)

are not well-posed (Jordan et al, 2008) and (Racke et al, 2009)

Correction: adding a non delayed term: exp. ∆θ(x , t) (Pruβ
1993) and (Batkai and Piazzera 2005); Well-posedness.

Correction: adding KV damping. (Ammari et al., 2015):


u′′(t) + aBB∗u′(t) + BB∗u(t − τ) = 0, in (0,∞),
u(0) = u0, u′(0) = u1,
B∗u(t − τ) = f0(t − τ), in (0, τ),

where B : D(B) ⊂ H1 → H is a linear unbounded operator
from a Hilbert space H1 to a Hilbert space H... They obtained
an exponential decay result under the assumption τ ≤ a.
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Delay in ODEs and PDEs

Example


utt(x , t)− a∆ut(x , t)−∆u(x , t − τ) = 0, in Ω× (0,∞),
u = 0, on ∂Ω× (0,∞),
∇u(x , t − τ) = f0(x , t − τ), in Ω× (0, τ),
u(x , 0) = u0(x), ut(x , 0) = u1(x), in Ω

E (t) =
1

2

∫
Ω

(
|∇u|2 + |ut |2

)
dx + ξ

∫
Ω

∫ 1

0
|∇u(x , t − τρ|2 dρdx .

If ξ > 2τ
a and τ ≤ a the energy satisfies

E (t) ≤ Me−wtE (0), ∀ t > 0

for some positive constants M and w .
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Delayed systems


utt(x , t)− αuxx(x , t − τ) + γθx(x , t) = 0, in (0, `)× (0,∞),
θt(x , t)− κθxx(x , t) + γuxt(x , t) = 0, in (0, `)× (0,∞),
u(0, t) = u(`, t) = θx(0, t) = θx(`, t) = 0, t ≥ 0

where α, γ, κ, `, τ > 0. The functions u = u(x , t) and θ = θ(x , t)
describe respectively the displacement and the temperature
difference, x ∈ (0, `) and t ≥ 0.

(Racke 2012) under some initial and boundary conditions, the
system is unstable even if τ is relatively small.

τ = 0: Exponential stability (Hansen 92, Rivera 1992), and
specially,(Racke 2002) and (Liu and Zhang 1999) where
various types of boundary conditions are associated to the one
dimensional thermoelastic systems.
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Delayed systems

H is a Hilbert space.
A : D(A) ⊂ H → H a self-adjoint, positive definite operator.
We consider an abstract thermoelastic system with delay given by.{

u′′(t) + Au(t − τ)− Aβθ(t) = 0, t ∈ (0,+∞),
θ′(t) + Aαθ(t) + Aβu′(t) = 0, t ∈ (0,+∞)

(2)

(β, α) ∈ [0, 1]× [0, 1].
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Delayed systems

(Racke 2012)

α

β
1

1

1/2

1/2

A1

Figure: Aeria of instability A1

(with delay at u and no damping)

α

β
1

1

1/2

3 /4

A1

1/2

A2

Figure: Aeria of instability A2

(with delay at θ and no damping)

A1 := {(β, α) | 0 ≤ β ≤ α ≤ 1, α ≥ 1
2 , (β, α) 6= (1, 1)}

A2 := {(β, α) | 0 ≤ β ≤ α ≤ 1, (β, α) 6= (1, 1)}
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Delayed systems

τ = 0 (F. A. Khodja et al. 1999) and (Hao and Liu 2013)

Well-posed: [0, 1]× [0, 1]

Exp. stab.: S = {(β, α) ∈ [0, 1]2 | |2β − 1| ≤ α ≤ 2β}

Poly. stab.: S1 ∪ S2 = {(β, α) ∈ [0, 1]2 | 2β < α < 1− 2β}

Instability: S3 = {(β, α) ∈ [0, 1]2 | 0 < α < 2β − 1}.
α

β
1

1

1/2

1/2

S 1

S 3

S

S 2
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A concrete delayed systems with damping Delay at the second equation

(Mustapha and Kafini 2013)



utt(x , t)− αuxx(x , t) + γθx(x , t) = 0, in Ω× (0,∞),
θt(x , t)−κθxx(x , t − τ)− aθxx(x , t) + γuxt(x , t) = 0, in Ω× (0,∞),
u(0, t) = u(`, t) = 0, in (0,∞),
θx(0, t) = θx(`, t) = 0, in (0,∞),
ux(x , t − τ) = f0(x , t − τ), in Ω× (0, τ),
u(x , 0) = u0(x), ut(x , 0) = u1(x), θ(x , 0) = θ0(x), in Ω

(4)
Energy of a solution of problem (4):

E (t) :=
1

2

∫
Ω

(
u2
t (x , t) + αu2

x (x , t) + θ2(x , t)
)
dx

+ξ

∫
Ω

∫ 1

0
θ2
x(x , t − τρ)dρdx .

Exponential stability for |k| < a and |k| < ξ < a.
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A concrete delayed systems with damping Delay at the first equation

(Khatir and Shel 2022)



utt(x , t)−αuxx(x , t − τ)− βuxxt(x , t) + γθx(x , t) = 0, in Ω× (0,∞),
θt(x , t)− κθxx(x , t) + γuxt(x , t) = 0, in Ω× (0,∞),
u(0, t) = u(`, t) = 0, in (0,∞),
θx(0, t) = θx(`, t) = 0, in (0,∞),
ux(x , t − τ) = f0(x , t − τ), in Ω× (0, τ),
u(x , 0) = u0(x), ut(x , 0) = u1(x), θ(x , 0) = θ0(x), in Ω

(5)
Ω = (0, `). We define the energy of a solution of problem (5) as

E (t) :=
1

2

∫
Ω

(
u2
t (x , t) + αu2

x (x , t) + θ2(x , t)
)
dx

+ξ

∫
Ω

∫ 1

0
u2
x (x , t − τρ)dρdx

where ξ > 0 is a parameter fixed later on.
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A concrete delayed systems with damping Delay at the first equation

Well-posedness

We introduce, the new variable

z(x , ρ, t) = ux(x , t − τρ), in Ω× (0, 1)× (0,∞),

Clearly, z(x , ρ, t) satisfies

τzt(x , ρ, t) + zρ(x , ρ, t) = 0, in Ω× (0, 1)× (0,+∞),

z(x , 0, t) = ux(x , t), x ∈ Ω, t ∈ (0,+∞).
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A concrete delayed systems with damping Delay at the first equation

Well-posedness

Then, problem (5) takes the form

utt(x , t)− αzx(x , 1, t)− βuxxt(x , t) + γθx(x , t) = 0, in Ω× (0,∞),

τzt(x , ρ, t) + zρ(x , ρ, t) = 0, in Ω× (0, 1)× (0,+∞),

θt(x , t)− κθxx(x , t) + γuxt(x , t) = 0, in Ω× (0,∞),

u(0, t) = u(`, t) = 0, in (0,∞),

θx(0, t) = θx(`, t) = 0, in (0,∞),

z(x , 0, t) = ux(x , t), in Ω× (0,∞),

u(x , 0) = u0(x), ut(x , 0) = u1(x), θ(x , 0) = θ0(x), in Ω,

z(x , ρ, 0) = f0(x ,−τρ), in Ω× (0, 1).
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A concrete delayed systems with damping Delay at the first equation

Well-posedness

Without loss of generality, we assume that
∫

Ω θ(x , t)dx = 0.
Let

H =
{

(f , g , p, h) ∈ H1
0 (Ω)× L2(Ω)× L2(Ω× (0, 1))× L2(Ω) |∫

Ω
h(x)dx = 0

}
.

Equipped with the following inner product: for any
Uk = (fk , gk , pk , hk) ∈ H, k = 1, 2,

〈U1,U2〉H =

∫
Ω

(αf1x(x)f2x(x) + g1(x)g2(x) + h1(x)h2(x)) dx

+ξ

∫
Ω

∫ 1

0
p1(x , ρ)p2(x , ρ)dρdx ,

H is a Hilbert space.
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Well-posedness

Define
U := (u, ut , z , θ)

then, problem (5) can be formulated as a first order system of the
form {

U ′ = AU,
U(0) = (u0, u1, f0(., .− τ), θ0)

(6)

where the operator A is defined by

A


u
v
z
θ

 =


v

(αz(., 1) + βvx)x − γθx
− 1
τ zρ

−γvx + κθxx


with domain D(A) ={
U = (u, v , z , θ) ∈ H ∩

[
H1

0 (Ω)× H1
0 (Ω)× L2(Ω;H1(0, 1))× H2(Ω)

]
|

θx(0) = θx(`) = 0, z(., 0) = ux and (αz(., 1) + βvx) ∈ H1(Ω)
}

in the Hilbert space H.
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Well-posedness

Lemma

If ξ > 2τα2

β , then there exists m > 0 such that A−mId is
dissipative maximal.

The operator A generates a C0-semigroup on H.

Theorem

For any initial datum U0 ∈ H there exists a unique solution
U ∈ C([0,+∞),H) of problem (6). Moreover, if U0 ∈ D(A), then
U ∈ C([0,+∞),D(A)) ∩ C1([0,+∞),H).
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A concrete delayed systems with damping Delay at the first equation

Exponential stability

Based on Lyapunov method, we prove that:

Theorem

There exists β0 > 0 such that for every β ≥ β0, the system (5) is
exponentially stable:

E (t) ≤ Me−wtE (0), ∀ t > 0

for some positive constants M and w .

Farhat Shel Thermoelastic system with delay
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Recently, based on a frequency domain result for exponential
stability of a C0 semigroup (due to Gearhard-Pruss-Huang):

Lemma

A C0 semigroup etL on a Hilbert space G satisfies

‖etL‖L(G) ≤ Ce−wt

for some constants C > 0 and w > 0 if and only if

C0 :=
{
λ ∈ C| Re(λ) > 0

}
⊂ ρ(L) (7)

and

sup
Re(λ)>0

‖(λI − L)−1‖L(G) <∞, (8)

where ρ(L) denotes the resolvent set of the operator L.

we prove that system (5) is exponentially stable for β ≥ ατ .
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A concrete delayed systems with damping Delay at the first equation

Proof of (7)

Here θ(0, t) = θ(`, t) = 0.
Let λ ∈ C0 and F = (f , g , p, h) ∈ H. We look for U = (u, v , z , θ)
such that

(λI −A)U = F ,

i.e. 
λu − v = f , in H1

0 (Ω),
λv − (αz(., 1) + βvx)x + γθx = g , in L2(Ω),
λz + 1

τ zρ = p, in L2(Ω× (0, 1)),
λθ + γvx − κθxx = h, in L2(Ω).

(9)

We have,

z(x , ρ) = e−λτρux(x) + τe−λτρ
∫ ρ

0
p(s)eλτsds,
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A concrete delayed systems with damping Delay at the first equation

Proof of (7)

Multiplying (9)2 and (9)4 respectively by λw ∈ H1
0 (Ω) and

ϕ ∈ H1
0 (Ω), and summing:

B ((u, θ), (w , ϕ)) = Φ(w , ϕ)

with

B ((u, θ), (w , ϕ)) = λλ2

∫
Ω
uwdx +

(
αλe−λτ + |λ|2β

)∫
Ω
uxwxdxdx

+ λ

∫
Ω
θϕ+ κ

∫
Ω
θxϕxdx

+ γ

(
λ

∫
Ω
θxwdx − λ

∫
Ω
uϕxdx

)
Φ((w , ϕ)) = λ

∫
Ω

(g+λf )wdx+λ

∫
Ω

(βfx−αz0)wxdx+

∫
Ω

(h+γfx)θdx

Lax-Milgram:

F :=
{

(w , ϕ) ∈ H1
0 (Ω)× H1

0 (Ω)
}
,
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A concrete delayed systems with damping Delay at the first equation

Proof of (7)

Coercivity of B:

Re (B ((w , ϕ), (w , ϕ))) = Re(λ)|λ|2‖w‖2 + Re(λ)‖ϕ‖2 + κ‖ϕx‖2

+
(
αRe(λe−λτ ) + |λ|2β

)
‖wx‖2.

To conclude, it suffices to prove that
(
αRe(λe−λτ ) + |λ|2β

)
> 0.

αRe(λe−λτ ) + |λ|2β ≥ |λ| (|λ|β − α) > 0 for |λ| ≥ α
β .

|λ| ≤ α
β . Denote a := Re(λ) and b = Im(λ):

αRe(λe−λτ ) + |λ|2β ≥ αe−aτa cos(bτ) +
(
β − ατe−aτ

)
b2 + a2β.

By using ατ ≤ β, we have (β − ατe−aτ ) > 0. Then

αRe(λe−λτ ) + |λ|2β > 0.
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A concrete delayed systems with damping Delay at the first equation

Proof of (8)

Suppose that condition (8) is false. Then there exists a sequence
of complex numbers λn such that Re(λn) > 0, for all n ∈ N, and
|λn| → ∞, and a sequence of vector Un = (un, vn, zn, θn) ∈ D(A)
with ‖Un‖ = 1 for every n ∈ N, such that

‖(λnI −A)Un‖ = o(1). (10)

i.e.
λun − vn = fn = o(1), in H1

0 (Ω),
λnvn − (αzn(., 1) + βvn,x)x + γθx = gn = o(1), in L2(Ω),
λnzn + 1

τ zn,ρ = pn = o(1), in L2(Ω× (0, 1)),
λnθn + γvn,x − κθn,xx = hn = o(1), in L2(Ω).

(11)
We will prove that ‖Un‖ = o(1) which contradict the hypothesis:
‖Un‖ = 1.
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(ξ = 2τα2

β , m = α2

β )
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A concrete delayed systems with damping Delay at the first equation

Proof of (8)

Re (〈(λnI −A)Un,Un〉H)

≥ Re(λn) +
β

2
‖vn,x‖2 −m‖un,x‖2 + κ‖θn,x‖2

≥ Re(λn) +
β

2
‖vn,x‖2 − m

|λ|2
‖vn,x + fn,x‖2 + κ‖θn,x‖2

Then

Re (〈(λnI −A)Un,Un〉H)

≥ Re(λn) +
(

1
2β −

2m
|λn|2

)
‖vn,x‖2 + κ‖θn,x‖2 − 2m

|λn|2 ‖fn,x‖
2

Hence
vn,x = o(1) and θn,x = o(1)

which yield, first, using again (11)1,

un,x = o(1).
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Abstract delayed systems with damping (I) α-β systems

(K. Ammari, M. Salhi and F. Shel). H is a Hilbert space.
A : D(A) ⊂ H → H a self-adjoint, positive definite operator.

u′′(t) + Au(t − τ)− Aβθ(t) = 0, t ∈ (0,+∞),
θ′(t) + Aαθ(t) + Aβu′(t) = 0, t ∈ (0,+∞),
u(0) = u0, u

′(0) = u1, θ(0) = θ0,

A1/2u(t − τ) = φ(t), t ∈ (0, τ),
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Abstract delayed systems with damping (I) α-β systems

(K. Ammari, M. Salhi and F. Shel). H is a Hilbert space.
A : D(A) ⊂ H → H a self-adjoint, positive definite operator.

u′′(t)+Au(t − τ) + aAu′(t)− Aβθ(t) = 0, t ∈ (0,+∞),
θ′(t) + Aαθ(t) + Aβu′(t) = 0, t ∈ (0,+∞),
u(0) = u0, u

′(0) = u1, θ(0) = θ0,

A1/2u(t − τ) = φ(t − τ), t ∈ (0, τ),
(12)

Q := S ∪ S1 ∪ S2 = {(β, α) ∈ [0, 1]× [0, 1] | 2β − α ≤ 1}.

α

β

Q

S 3

1

1

1/2

Q
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Abstract delayed systems with damping (I) α-β systems

z(ρ, t) := A1/2x(t − τρ), ρ ∈ (0, 1), t > 0.

Then, problem (12) is equivalent to

u′′(t) + A1/2z(1, t) + aAu′(t)− Aβθ(t) = 0, t > 0,

θ′(t) + Aαθ(t) + Aβu′(t) = 0, t > 0,

τzt(t, ρ) + zρ(ρ, t) = 0, (ρ, t) ∈ (0, 1)× (0,+∞),

u(0) = u0, u
′(0) = u1, θ(0) = θ0,

z(ρ, 0) = φ(−τρ), ρ ∈ (0, 1)

z(0, t) = A1/2u(t), t > 0.
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Abstract delayed systems with damping (I) α-β systems

Define U = (u, u′, θ, z)>, Then, problem (12) can be formulated as{
U ′ = Aα,βU,
U(0) =

(
u0, u1, θ0, φ(−τ.)

)>
,

(13)

Aβ,α


u
v
θ
z

 =


v

−A1/2
(
z(., 1) + aA1/2v − Aβ−

1
2 θ
)

−Aα/2
(
Aα/2θ + Aβ−

α
2 v
)

−1

τ
zρ

 ,

D(Aβ,α) =
(u, v , θ, z)> ∈ D(A1/2)× D(A1/2)× D(Aα/2)× H1

(
(0, 1),H

)
:

z(0) = A1/2u, z(1) + aA1/2v − Aβ−
1
2 θ ∈ D(A

1
2 ), and

Aα/2θ + Aβ−
α
2 v ∈ D(Aα/2)

 ,
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Abstract delayed systems with damping (I) α-β systems

State space

H = D(A1/2)× H × H × L2
(
(0, 1),H

)
,

equipped with the scalar product(
(u, v , θ, z), (u1, v1, θ1, z1)

)
H =

(
A1/2u,A1/2u1

)
H

+ (v , v1)H

+ (θ, θ1)H + ξ

∫ 1

0
(z , z1)Hdρ.
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Abstract delayed systems with damping (I) α-β systems

Theorem

For (β, α) ∈ Q, a ≥ τ and ξ >
2τ

a
, the system (12) is well posed.

More precisely, the operator Aβ,α generates a C0-semigroup on H.
Moreover, the C0-semigroup eAβ,αt is exponentially stable.
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Abstract delayed systems with damping (I) α-β systems

Application: Thermoelastic plate with delay

Taking α = β = 1
2 , H = L2(Ω) where Ω is a smooth open bounded

domain in Rn, and consider



utt(x , t) + ∆2u(x , t − τ) + a∆2ut(x , t) + ∆θ(x , t) = 0, (x , t) ∈ Ω× (0,+∞)
θt(x , t)−∆θ(x , t)−∆ut(x , t) = 0, (x , t) ∈ Ω× (0,+∞)
u(x , t) = ∆u(x , t) = 0, (x , t) ∈ ∂Ω× (0,+∞)
w(x , 0) = w0(x),wt(x , 0) = w1(x), t ∈ (0, τ)
θ(x , t) = 0, (x , t) ∈ ∂Ω× (0,+∞)
θ(x , 0) = θ0(x),
−∆u(x , t) = f0(x , t), −τ ≤ t < 0, x ∈ Ω,

where τ and a are real positive constants.
Here, A1/2 = −∆, with domain D(A1/2) = H2(Ω) ∩ H1

0 (Ω), and
A = −∆2, with domain D(A) = H4(Ω) ∩ H2

0 (Ω)
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Abstract delayed systems with damping (I) Some related systems


u′′(t) + Au(t − τ) + aAu′(t)− Aβθ(t) = 0, t ∈ (0,+∞),
θ′(t) + Aαθ(t) + Aβu′(t) = 0, t ∈ (0,+∞),
u(0) = u0, u

′(0) = u1, θ(0) = θ0,
B∗u(t − τ) = φ(t − τ), t ∈ (0, τ),
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Abstract delayed systems with damping (I) Some related systems


u′′(t) + BB∗u(t − τ) + aAu′(t)− Cθ(t) = 0, t ∈ (0,+∞),
θ′(t) + Aαθ(t) + C ∗u′(t) = 0, t ∈ (0,+∞),
u(0) = u0, u

′(0) = u1, θ(0) = θ0,
B∗u(t − τ) = φ(t − τ), t ∈ (0, τ),

(14)
B : D(B) : H → H and C : D(C ) : H → H are closed densely
defined linear operators.

Formally, system (14) can be seen as a generalization of the
delayed α-β system (12).
We suppose also that D(Aα) ⊂ D(C ) and D(B∗) ⊂ D(C ∗) and

‖C ∗v‖H ≤ c1‖B∗v‖H , ∀ v ∈ D(B∗)

.
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Abstract delayed systems with damping (I) Some related systems

Here we take

z(ρ, t) := B∗u(t − τρ), ρ ∈ (0, 1), t > 0.

Then, problem (14) is equivalent to{
U ′ = AU,
U(0) =

(
u0, u1, θ0, φ(−τ.)

)>
,

H = D(B∗)× H × H × L2
(
(0, 1),H

)
,

System (14) is well-posed and exponentially stable for a ≥ τ .
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,
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)
,
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Abstract delayed systems with damping (I) Some related systems

Application: Thermoelastic string



utt(t, x)− uxx(x , t)− auxx(x , t − τ) + θx(x , t) = 0, (x , t) ∈ (0, L)× (0,+∞)
θt(x , t)− θxx(x , t) + uxt(x , t) = 0, (x , t) ∈ (0, L)× (0,+∞)
u(0, t) = u(L, t) = 0, t ∈ (0,+∞)
u(x , 0) = u0(x), ut(x , 0) = u1(x), t ∈ (0, τ)
θ(0, t) = θ(L, t) = 0, t ∈ (0,+∞)
θ(x , 0) = θ0(x),
ux(x , t) = f0(x , t),−τ ≤ t < 0, x ∈ Ω,

H = L2(0, L), A = − ∂2

∂x2 : D(A) = H1
0 (0, L) ∩ H2(0, L)→ L2(0, L),

α = 1, B = C ∗ = − ∂
∂x : D(B) = H1(0, L)→ L2(0, L),

B∗ = C = ∂
∂x : D(B∗) = H1

0 (0, L)→ L2(0, L). We have that
A = BB∗, D(A) ⊂ D(C ), D(B∗) ⊂ D(C ∗) and
‖C ∗v‖ ≤ ‖B∗v‖, ∀ v ∈ D(B∗).
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Abstract delayed systems with damping (II)


u′′(t) + Au(t)− Aβθ(t) = 0, t ∈ (0,+∞),
θ′(t) + κAαθ(t − τ) + aAαθ(t) + Aβu′(t) = 0, t ∈ (0,+∞),
u(0) = u0, u

′(0) = u1, θ(0) = θ0,

Aα/2θ(t − τ) = g(t − τ), t ∈ (0, τ).

where κ > 0 is a constant.
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Abstract delayed systems with damping (II)


u′′(t) + Au(t)− Cθ(t) = 0, t ∈ (0,+∞),
θ′(t) + κBB∗θ(t − τ) + aBB∗θ(t) + B∗u′(t) = 0, t ∈ (0,+∞),
u(0) = u0, u

′(0) = u1, θ(0) = θ0,
B∗θ(t − τ) = φ(t), t ∈ (0, τ),

(15)
We suppose that D(A1/2) ⊂ D(C ∗) and D(B∗) ⊂ D(C ) and

‖Cv‖H ≤ c‖B∗v‖H , ∀ v ∈ D(B∗)
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Abstract delayed systems with damping (II)

Application



wtt(t, x) + wxx(x , t) + θx(x , t) = 0, (x , t) ∈ (0, L)× (0,+∞)
θt(x , t) + κθxx(x , t − τ) + aθxx(x , t) + uxt(x , t) = 0, (x , t) ∈ (0, L)× (0,+∞)
w(0, t) = w(L, t) = 0,
w(x , 0) = w0(x),wt(x , 0) = w1(x), t ∈ (0, τ)
θx(0, t) = θx(L, t) = 0, t ∈ (0,+∞)
θ(x , 0) = θ0(x),
wx(x , t) = f0(x , t), −τ ≤ t < 0, x ∈ Ω,
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THANKS!
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