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Introduction
Linear wave equation with linear boundary conditions






∂2
ttz(t, x) = ∂2

xxz(t, x) (t, x) ∈ R+ × (0, 1)
z(t, 0) = 0 t ∈ R+

∂xz(t, 1) = −a∂tz(t, 1) t ∈ R+ a ∈ R

0
Dirichlet

1
∂xz = −a∂tz

g

f

D’Alembert decomposition intro traveling waves:
z(t, x) = 1√

2

w t+x

0
f (s) ds + 1√

2

w t−x

0
g(s) ds

f : [0, +∞) → R, g : [−1, +∞) → R: Riemann invariants
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Introduction
Linear wave equation with linear boundary conditions

0
Dirichlet

1
∂xz = −a∂tz

g

f






∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
∂xz(t, 1) = −a∂tz(t, 1)

z(t, x) = 1√
2

w t+x

0
f (s) ds + 1√

2

w t−x

0
g(s) ds

∂tz(t, x) = f (t+x)+g(t−x)√
2

∂xz(t, x) = f (t+x)−g(t−x)√
2

• At x = 0:
z(t, 0) = 0 =⇒ ∂tz(t, 0) = 0 =⇒ g(t) = −f (t)

• At x = 1:
∂xz(t, 1) = −a∂tz(t, 1) =⇒ f (t + 1) = 1−a

1+ag(t − 1)
Γ = 1−a

1+a : reflection coefficient

g(t) = −Γg(t − 2)

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti



Introduction Set-valued damping Asymptotic behavior Further comments

Introduction
Linear wave equation with linear boundary conditions

0
Dirichlet

1
∂xz = −a∂tz

g

f






∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
∂xz(t, 1) = −a∂tz(t, 1)

z(t, x) = 1√
2

w t+x

0
f (s) ds + 1√

2

w t−x

0
g(s) ds

∂tz(t, x) = f (t+x)+g(t−x)√
2

∂xz(t, x) = f (t+x)−g(t−x)√
2

• At x = 0:
z(t, 0) = 0 =⇒ ∂tz(t, 0) = 0 =⇒ g(t) = −f (t)

• At x = 1:
∂xz(t, 1) = −a∂tz(t, 1) =⇒ f (t + 1) = 1−a

1+ag(t − 1)
Γ = 1−a

1+a : reflection coefficient

g(t) = −Γg(t − 2)

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti



Introduction Set-valued damping Asymptotic behavior Further comments

Introduction
Linear wave equation with linear boundary conditions

0
Dirichlet

1
∂xz = −a∂tz

g

f






∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
∂xz(t, 1) = −a∂tz(t, 1)

z(t, x) = 1√
2

w t+x

0
f (s) ds + 1√

2

w t−x

0
g(s) ds

∂tz(t, x) = f (t+x)+g(t−x)√
2

∂xz(t, x) = f (t+x)−g(t−x)√
2

• At x = 0:
z(t, 0) = 0 =⇒ ∂tz(t, 0) = 0 =⇒ g(t) = −f (t)

• At x = 1:
∂xz(t, 1) = −a∂tz(t, 1) =⇒ f (t + 1) = 1−a

1+ag(t − 1)
Γ = 1−a

1+a : reflection coefficient

g(t) = −Γg(t − 2)
Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti



Introduction Set-valued damping Asymptotic behavior Further comments

Introduction
Linear wave equation with linear boundary conditions






∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
∂xz(t, 1) = −a∂tz(t, 1)

z(t, x) = 1√
2

r t+x
0 f (s) ds + 1√

2

r t−x
0 g(s) ds

g(t) = −Γg(t − 2) Γ = 1 − a
1 + a

• Existence and uniqueness: ok if
a ̸= −1

•
{

∂tz(t + 2, x) = −Γ∂tz(t, x)
∂xz(t + 2, x) = −Γ∂xz(t, x)

Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2Γ = 1
2

•






a > 0, a ̸= 1 0 < |Γ| < 1 Exponential convergence
a = 1 Γ = 0 Finite-time convergence
a < 0, a ̸= −1 |Γ| > 1 Exponential instability
a = −1 Not well-posed
a = 0 or a → ∞ |Γ| = 1 Periodic solutions
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Introduction
Nonlinear boundary condition






∂2
ttz(t, x) = ∂2

xxz(t, x) (t, x) ∈ R+ × (0, 1)
z(t, 0) = 0 t ∈ R+

∂xz(t, 1) = −σ (∂tz(t, 1)) t ∈ R+ σ : R → R

• Motivation: Localized boundary control
∂xz(t, 1) = u(t) u(t) = −σ (∂tz(t, 1))

• Nonlinear phenomena in the implementation of a control

strategy: nonlinearities in components, saturation:
• Subject of several works, also in higher dimension: [Conrad,

Leblond, Marmorat; 1989], [Zuazua; 1990], [Lasiecka, Tataru; 1993],
[Martinez; 1999], [Pierre, Vanconstenoble; 2000], [Vancostenoble,
Martinez; 2000], [Haraux; 2009], [Alabau-Boussouira; 2012],
[Cheng-Zhong Xu, Gen Qi Xu; 2019], ...
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Introduction
Nonlinear boundary condition

Main questions
(Q1) Existence and uniqueness of solutions
(Q2) Asymptotic behavior as t → +∞






∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
∂xz(t, 1) = −σ (∂tz(t, 1))

• Classical functional framework:
(z(t, ·), ∂tz(t, ·)) ∈ X2 := H1

∗ (0, 1) × L2(0, 1) with
H1

∗ (0, 1) = {z ∈ H1(0, 1) | z(0) = 0}
⇝ Some works consider Lp in dimension d = 1
⇝ Ill-posed in Lp for p ̸= 2 and d ≥ 2 [Peral; 1980]

• σ is usually assumed to be continuous, nondecreasing, and
with σ (0) = 0

• Energy is nonincreasing ⇐⇒ σ (s)s ≥ 0 ∀s ∈ R

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
∂xz(t, 1) = −σ (∂tz(t, 1))

z(t, x) = 1√
2

r t+x
0 f (s) ds + 1√

2

r t−x
0 g(s) ds

∂tz(t, x) = f (t+x)+g(t−x)√
2 ∂xz(t, x) = f (t+x)−g(t−x)√

2
At x = 0: z(t, 0) = 0 =⇒ ∂tz(t, 0) = 0 =⇒ g(t) = −f (t)

At x = 1: ∂xz(t, 1) = −σ (∂tz(t, 1))
=⇒ f (t+1)−g(t−1)√

2 = −σ
(

f (t+1)+g(t−1)√
2

)

=⇒ g(t)+g(t−2)√
2 = σ

(
g(t−2)−g(t)√

2

)
since f = −g

=⇒ σ
(

g(t−2)−g(t)√
2

)
+ g(t−2)−g(t)√

2 =
√

2g(t − 2)

=⇒ g(t−2)−g(t)√
2 = (id+σ )−1

(√
2g(t − 2)

)
if id +σ invert.

=⇒ g(t) = g(t − 2) −
√

2(id +σ )−1
(√

2g(t − 2)
)

=: S(g(t − 2))
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∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
∂xz(t, 1) = −σ (∂tz(t, 1))

g(t) = S(g(t − 2)) := g(t − 2) −
√

2(id +σ )−1
(√

2g(t − 2)
)

• Existence and uniqueness if id +σ is invertible
• Previous argument adapted from [Pierre, Vanconstenoble; 2000]
⇝ Used there to prove existence even if id +σ is not invertible

(through a pseudo-inverse)
⇝ Uniqueness condition: σ (s)−σ (t)

s−t > −1 if s ̸= t
• What lies behind the above formula?

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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Introduction
Rotation of angle −π/4

g(t) = S(g(t − 2)) := g(t − 2) −
√

2(id +σ )−1
(√

2g(t − 2)
)

What lies behind the above formula?




∂2
ttz(t, x) = ∂2

xxz(t, x) (t, x) ∈ R+ × (0, 1)
z(t, 0) = 0 t ∈ R+

∂xz(t, 1) = −σ (∂tz(t, 1)) t ∈ R+, σ : R → R

(
g(t − x)

−f (t + x)

)
=
( 1√

2
1√
2

− 1√
2

1√
2

)

︸ ︷︷ ︸
R

(
∂tz(t, x)

−∂xz(t, x)

)

Boundary conditions in terms of f and g:

z(t, 0) = 0 ⇐⇒ g(t) = −f (t)
(∂tz(t, 1), −∂xz(t, 1)) ∈ Σ ⇐⇒ (g(t − 1), −f (t + 1)) ∈ RΣ

In terms of g only: (g(t − 2), g(t)) ∈ RΣ ∀t ≥ 1
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Introduction
Rotation of angle −π/4

g(t) = S(g(t − 2)) := g(t − 2) −
√

2(id +σ )−1
(√

2g(t − 2)
)

What lies behind the above formula?

(g(t − 2), g(t)) ∈ RΣ ∀t ≥ 1

Σ: graph of σ, R =
( 1√

2
1√
2

− 1√
2

1√
2

)

S is (the function whose graph is) the rotation of the graph of σ
by an angle −π

4
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Wave equation with set-valued boundary damping
Setting






∂2
ttz(t, x) = ∂2

xxz(t, x) (t, x) ∈ R+ × (0, 1)
z(t, 0) = 0 t ∈ R+

(∂tz(t, 1), −∂xz(t, 1)) ∈ Σ t ∈ R+ Σ ⊂ R2

• Previous setting: Σ is the graph of σ : R → R
• Now: Σ is the graph of a set-valued function R⇒ R

z(t, x) = 1√
2

w t+x

0
f (s) ds + 1√

2

w t−x

0
g(s) ds

By the same D’Alembert decomposition as before, the above
system is equivalent to

g(t) ∈ S(g(t − 2)) ∀t ≥ 1
where S : R⇒ R the set-valued map whose graph is RΣ.
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Wave equation with set-valued boundary damping
Functional setting

Solution z Function g





∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
(∂tz(t, 1), −∂xz(t, 1)) ∈ Σ

g(t) ∈ S(g(t − 2))

(z(t, ·), ∂tz(t, ·)) ∈ W 1,p
∗ (0, 1) × Lp(0, 1)︸ ︷︷ ︸

Xp

g ∈ Lp
loc(−1, +∞)

W 1,p
∗ (0, 1) = {z ∈ W 1,p(0, 1) | z(0) = 0} Graph(S) = RΣ

∥(u, v )∥Xp =






1√
2

[w 1

0

(
|u′ + v |p + |u′ − v |p

)
ds
] 1

p
p < +∞

1√
2

max
(
∥u′ + v∥L∞ , ∥u′ − v∥L∞

)
p = +∞

∥(z(t, ·), ∂tz(t, ·))∥Xp = ∥g(t + ·)∥Lp(−1,1)
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Wave equation with set-valued boundary damping
Functional setting

Solution z Function g





∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
(∂tz(t, 1), −∂xz(t, 1)) ∈ Σ

g(t) ∈ S(g(t − 2))

(z(t, ·), ∂tz(t, ·)) ∈ W 1,p
∗ (0, 1) × Lp(0, 1)︸ ︷︷ ︸

Xp

g ∈ Lp
loc(−1, +∞)

W 1,p
∗ (0, 1) = {z ∈ W 1,p(0, 1) | z(0) = 0} Graph(S) = RΣ

∥(u, v )∥Xp =






1√
2

[w 1

0

(
|u′ + v |p + |u′ − v |p

)
ds
] 1

p
p < +∞

1√
2

max
(
∥u′ + v∥L∞ , ∥u′ − v∥L∞

)
p = +∞

∥(z(t, ·), ∂tz(t, ·))∥Xp ∥z(t, ·)∥Xp = ∥g(t + ·)∥Lp(−1,1)
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Wave equation with set-valued boundary damping
The set-valued map S

S : R⇒ R is the set-valued map whose graph is RΣ

Σ

R

RΣ

Σ: graph of σ (x) = ax , RΣ: graph of x 7→ −Γx , Γ = 1−a
1+a

If a = −1, then RΣ is a vertical line
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Wave equation with set-valued boundary damping
The set-valued map S

S : R⇒ R is the set-valued map whose graph is RΣ

Σ

R
RΣ

Σ is the graph of a function σ
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Wave equation with set-valued boundary damping
The set-valued map S

S : R⇒ R is the set-valued map whose graph is RΣ

Σ

R
RΣ

Σ and RΣ are not graphs of functions

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti



Introduction Set-valued damping Asymptotic behavior Further comments

Wave equation with set-valued boundary damping
The set-valued map S

S : R⇒ R is the set-valued map whose graph is RΣ

Σ

R

RΣ

Σ is the sign set-valued map, RΣ is the graph of a function
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Wave equation with set-valued boundary damping
Existence and uniqueness of solutions






∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
(∂tz(t, 1), −∂xz(t, 1)) ∈ Σ

gn+1(t) ∈ S(gn(t))
Graph(S) = RΣ

Theorem (Existence)
Assume that RΣ contains the graph of a universally measurable
function with linear growth. Then, for every initial condition
(z(0, ·), ∂tz(0, ·)) in Xp, there exists a solution to the wave
equation such that (z(t, ·), ∂tz(t, ·)) ∈ Xp for all t ≥ 0.

• φ is universally
measurable ⇐⇒ φ ◦ g is Lebesgue meas.

∀g Lebesgue meas.
• φ with linear growth: g ∈ Lp =⇒ φ ◦ g ∈ Lp

• “Conversely”, if ∃ a solution for every initial condition in Xp,
then RΣ contains the graph of a universally measurable
function and the graph of a function with linear growth

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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Wave equation with set-valued boundary damping
Existence and uniqueness of solutions






∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
(∂tz(t, 1), −∂xz(t, 1)) ∈ Σ

gn+1(t) ∈ S(gn(t))
Graph(S) = RΣ

Theorem (Uniqueness)
For every initial condition in Xp, there exists a unique solution to
the wave equation if and only if RΣ is equal to the graph of a
universally measurable function with linear growth.

• Necessary and sufficient condition in terms of
RΣ = Graph(S)

• Both statements only for p < +∞; also hold for p = +∞
replacing linear growth by a weaker assumption

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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Wave equation with set-valued boundary damping
Existence and uniqueness of solutions

Σ

R

RΣ

Σ and RΣ are graphs of linear functions
Existence and uniqueness except if Σ is the graph of σ (x) = −x
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Wave equation with set-valued boundary damping
Existence and uniqueness of solutions

Σ

R
RΣ

Σ is the graph of a function σ
Existence, not uniqueness
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Wave equation with set-valued boundary damping
Existence and uniqueness of solutions

Σ

R
RΣ

Σ and RΣ are not graphs of functions
Existence, not uniqueness
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Wave equation with set-valued boundary damping
Existence and uniqueness of solutions

Σ

R

RΣ

Σ is the sign set-valued map, RΣ is the graph of a function
Existence and uniqueness
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Wave equation with set-valued boundary damping
Existence and uniqueness of solutions

Σ

R

RΣ

Σ is the sign function
No existence

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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Asymptotic behavior
Nonincreasing norm

From now on: Σ is such that we have existence of solutions (not
necessarily uniqueness)

Proposition
For every solution, t 7→ ∥z(t, ·)∥Xp is nonincreasing
⇐⇒ ∀(x, y) ∈ Σ, xy ≥ 0
⇐⇒ ∀(x, y) ∈ RΣ, |y| ≤ |x|

Generalization of the condition sσ (s) ≥ 0

R

We always assume this condition from now on
Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti



Introduction Set-valued damping Asymptotic behavior Further comments

Asymptotic behavior
Some previous results

Some previous results with nonlinear damping
[Vancostenoble, Martinez; 2000]
[Alabau-Boussouira; 2012]






∂2
ttz(t, x) = ∂2

xxz(t, x)
z(t, 0) = 0
∂xz(t, 1) = −σ (∂tz(t, 1))

(σ is odd, expressions below for s > 0 small and t large)
σ (s) = sq =⇒ ∥z(t)∥X2 ∼ t− 1

q−1 q > 1

σ (s) = sq (ln
(1

s
))r =⇒ ∥z(t)∥X2 ∼ t− 1

q−1 (ln t)−
r

q−1 q > 1, r > 0

σ (s) = e− 1
sq =⇒ ∥z(t)∥X2 ∼ (ln t)−

1
q q > 0

σ (s) = e−e1/s =⇒ ∥z(t)∥X2 ∼ (ln ln t)−2

σ (s) = e−(ln( 1
s ))

q
=⇒ ∥z(t)∥X2 ∼ e−(ln t)

1
q 1 < q < 2

σ (s) = s
(
ln
(1

s
))−q =⇒ ∥z(t)∥X2 ≲ e−Ct

1
q+1 q > 0

• σ ′(0) = 0 in all of the above cases
• σ ⇝ σ−1 =⇒ Same convergence rate

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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Asymptotic behavior
Decay rates

How fast do solutions converge to 0?
Nonlinear sector condition:

• In terms of Σ: ∃q ∈ C1 such that q(0) = 0, 0 < q(x) < x ,
|q′(x)| < 1 for x > 0 such that

q(|x|) ≤ |y| and q(|y|) ≤ |x| ∀(x, y) ∈ Σ
• In terms of S: ∃Q ∈ C1 and M > 0 such that Q(0) = 0,

0 < Q(x) < x , Q′(x) > 0 for x > 0 such that
|y| ≤ Q(|x|) ∀y ∈ S(x)

q

q−1

R
Q

−Q

Q(x) =
√

2(q + id)−1(
√

2x) − x
Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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Asymptotic behavior
Decay rates

Theorem
Assume that Σ satisfies a nonlinear sector condition with
functions q and Q as before. Then

∥z(t, ·)∥X∞ ≤ Q[⌊ t
2⌋](∥z(0, ·)∥X∞)

Q[n] = Q ◦ · · · ◦ Q︸ ︷︷ ︸
n

• Similar statement for p < +∞ but with additional terms

• ∥z(t, ·)∥Xp ≥ C1Q[⌊ t
2⌋](C2) for non-trivial

solutions if we assume:

q

q−1

• If Σ is the graph of q or q−1: ∥z(t, ·)∥Xp ∼ Q[⌊ t
2⌋](C )

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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Asymptotic behavior
Decay rates

Asymp. behavior of ∥(z(t, ·), ∂tz(t, ·))∥Xp ↭ Asymp. behavior of Q [n](x0)

Asymptotic behavior of Q[n](x0) under nonlinear sector condition:
1 Case q′(0) = 0:

Q[n](x0) ∼ V (n)
where V ′(t) = −

√
2q(

√
2V (t)) with V (0) = x0

⇝ [Vancostenoble, Martinez; 2000]: Q [n](x0) = V (tn) with tn ∼ n
2 Case q′(0) ∈ (0, 1): ∃C > 1 s.t.

C−1e−λn ≤ Q[n](x0) ≤ Ce−λn

where λ = 2artanh(q′(0)).
3 Case q′(0) = 1:

lim
n→+∞

eλnQ[n](x0) = 0 for every λ > 0

Remark: some results require additional technical assumptions,
but weaker conclusions available also without those assumptions

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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Asymptotic behavior
Decay rates

Consequences:
(σ is odd, expressions below for s > 0 small and t large)
σ (s) = sq =⇒ ∥z(t)∥Xp ∼ t− 1

q−1 q > 1

σ (s) = sq (ln
(1

s
))r =⇒ ∥z(t)∥Xp ∼ t− 1

q−1 (ln t)−
r

q−1 q > 1, r > 0

σ (s) = e− 1
sq =⇒ ∥z(t)∥Xp ∼ (ln t)−

1
q q > 0

σ (s) = e−e1/s =⇒ ∥z(t)∥Xp ∼ (ln ln t)−2

σ (s) = e−(ln( 1
s ))

q
=⇒ ∥z(t)∥Xp ∼ e−(ln t)

1
q 1 < q < 2

σ (s) = s
(
ln
(1

s
))−q =⇒ ∥z(t)∥Xp ∼ 1√

2
e−

∑N
k=0 αk t

1−2qk
q+1 q > 0

N =
⌊

1
2q

⌋
, α0 = (q + 1)

1
q+1
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Further comments
Other results

Also in [Chitour, Marx, Mazanti; 2021]:
• Necessary and sufficient condition for strong stability,

uniform global asymptotic stability, and global exponential
stability

• Arbitrarily slow convergence if σ is saturated:
∀p ∈ [1, +∞) ∀φ : [0, +∞) → (0, +∞) decreasing to 0, ∃ an
initial condition in Xp s.t. ∀ solution z

0 < φ(t) ≤ ∥z(t, ·)∥Xp −−−−→
t→+∞

0
⇝ Conjectured in [Vancostenoble, Martinez; 2000]
⇝ Initial conditions with explosions (whence p < +∞)
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Further comments
Other results

Also in [Chitour, Marx, Mazanti; 2021]:

• Study of the case Σ =
Solutions converge to a 2-periodic solution (in finite time if
the initial condition is in X∞)
⇝ Extends a previous result of [Cheng-Zhong Xu, Gen Qi Xu;

2019] in p = 2 to the case of any p ∈ [1, +∞]
⇝ The limit is more explicitly identified (instead of based on a

Fourier series expansion)
• Input-to-state stability (ISS) for systems with a boundary

disturbance
(∂tz(t, 1), −∂xz(t, 1)) ∈ Σ + d(t)
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Further comments
Ongoing work

Ongoing work with Y. Chitour and S. Marx: Generalize the
approach to hyperbolic systems of the form




∂tu(t, x) + Λ(t, x)∂xu(t, x) = g(t, x, u(t, ·)) t > 0, x ∈ (0, 1)
u(0, x) = u0(x) x ∈ [0, 1]
u(·, 0) ∈ F (u(·, 1)) t ≥ 0

with u(t, x) ∈ Rd, Λ(t, x) diagonal with positive diagonal entries,
and F set-valued.

• Existence of solutions in Lp
t,x

• Hidden regularity: u ∈ C0
t Lp

x and u ∈ C0
xLp

t
• Energy estimate:
∥u∥Lp

t,x ; C0
t Lp

x ; C0
xLp

t
≲ ∥u0∥Lp

x
+ ∥g(·, ·, 0)∥Lp

t,x
+ B

⇝ B depends on the behavior of F close to 0
• Uniqueness if F is single-valued
• Asymptotic behavior?

Wave equations with nonsmooth boundary conditions: well-posedness and asymptotic behavior Guilherme Mazanti
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