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Introduction

Context: Sliding mode control design for the stabilization of a class of
infinite-dimensional systems.
Linear abstract Cauchy problem:







d

dt
z = Az +B(u+ d),

z(0) = z0,
(1)

1 K is either R or C,
2 H denotes a Hilbert space over the field K,
3 A : D(A) ⊆ H→ H is a linear operator with D(A) densely defined in H,
4 B ∈ L(K,D(A∗)′), with A∗ the adjoint operator of A,
5 z(t) ∈ H is the state, u(t) ∈ K is the control input and d(t) ∈ K is an

unknown disturbance.
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Introduction

Example



















zt(t,x) = zxx(t,x), (t,x) ∈ R≥0 × [0,1],
zx(t,0) = c0z(t,0), t ∈ R+,

zx(t,1) = u(t) + d(t), t ∈ R+,

z(0,x) = z0(x),

(2)



























ztt(t,x) + zxxxx(t,x) = 0, (t,x) ∈ R≥0 × [0,1],
z(t,0) = zx(t,0) = 0, t ∈ R+,

zxx(t,1) = 0, t ∈ R+,

zxxx(t,1) = u(t) + d(t), t ∈ R+,

z(0,x) = z0(x),

(3)
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Introduction

Question

How can one propose a systematic methodology for the design of sliding
variables for linear infinite-dimensional systems?
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Finite-dimensional example

Let us consider the following system
�

ż1 = −z1 + z2,

ż2 = u+ d.
(4)

Nominal control

If d = 0, the feedback-law

u := u0 = −2z2 (5)

provides asymptotic stability of the origin of (4).
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Finite-dimensional example

If we select u as
u = u0 + uSMC (6)

then system (4) can be written as follows:
�

ż1
ż2

�

= AL

�

z1
z2

�

+B(uSMC + d) (7)

with

AL = A+BL, A =

�

−1 1
0 0

�

, B =

�

0
1

�

, and L =
�

0 −2
�

. (8)
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Finite-dimensional example

Let φ =

�

1
1

�

∈ R2 be an eigenvector of A⊤
L

and let us introduce the

following surface

Σ :=

��

z1
z2

�

∈ R2 |
��

z1
z2

�

, φ

�

R2
= z1 + z2 = 0
�

. (9)

On Σ the system (7) is equivalent to
�

ż1 = −z1 + z2,

z2 = −z1.
(10)

Thus, z1 and z2 converge to zero asymptotically.
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Finite-dimensional example

Let us introduce a new variable σ given by

σ =

��

z1
z2

�

, φ

�

R2
. (11)

From (7), the σ-dynamics yields

σ̇ =

��

ż1
ż2

�

, φ

�

R2
=

�

AL

�

z1
z2

�

+B(uSMC + d), φ

�

R2

=

�

AL

�

z1
z2

�

, φ

�

R2
+ 〈B, φ〉R2 (uSMC + d) (12)

Since φ is an eigenvector of A⊤
L

and 〈B, φ〉R2 = 1, then we obtain

σ̇ = λσ + uSMC + d. (13)
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Finite-dimensional example

Thus, the following holds, for all t ≥ 0

1

2

d

dt
|σ|2 = σσ̇ = σ (λσ + uSMC + d) = λσ2 + σ (uSMC + d) . (14)

Since λ = −1 < 0 then, we have

1

2

d

dt
|σ|2 ≤ +σuSMC + |σ||d|. (15)

Therefore, if we assume that d is bounded, i.e ∥d∥L∞(R+) ≤M with M > 0,
then by selecting

uSMC = −ρsign(σ) (16)

with ρ > M, we obtain

1

2

d

dt
|σ|2 ≤ −|σ|(ρ − M). (17)
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Finite-dimensional example

As a consequence, σ reaches zero in a finite-time tr that is bounded by

tr ≤
|σ(0)|

ρ − M
. (18)

Conclusion

With the control input u = −2z2 − ρsign(σ), the system (4) reaches the
sliding surface Σ in finite time tr and remains on it.
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Assumption 1

The following statements hold.

(i) The operator A : D(A) ⊆ H→ H generates a strongly continuous
semigroup, that is denoted by (T(t))t≥0.

(ii) The operator B is admissible for (T(t))t≥0.
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Assumption 1

(iii) There exists an operator L : D(L)→ K such that the operator
�

AL = A+BL,

D(AL) = {z ∈ D(L); (A+BL)z ∈ H},
(19)

is the infinitesimal generator of a strongly continuous semigroup
(S(t))t≥0 on H and the origin of the following system







d

dt
z = (A+BL)z,

z(0) = z0,
(20)

is globally asymptotically stable.
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Sliding surface

Let φ ∈ D(A∗
L
) is an eigenfunction of A∗

L
such that B∗φ ̸= 0 and λ the

eigenvalue associated with φ. We define the sliding surface as follow Σ

Σ := {z ∈ H | 〈φ, z〉H = 0}.

Its related sliding variable σ : R+→ K is defined by

σ(t) := 〈φ, z(t)〉H (21)

for any solution z of (1).
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Sliding mode Control

We consider the control u to be

u = Lz + uSMC (22)

Formally, the derivative of σ along the trajectory of (1) and (22)
yields,for all t ≥ 0

σ̇(t) = 〈φ,
d

dt
z(t)〉H

= 〈φ,ALz(t)〉H +B∗φ
�

uSMC(t) + d(t)
�

= 〈A∗
L
φ, z(t)〉H +B∗φ

�

uSMC(t) + d(t)
�

(23)

= λ〈φ, z(t)〉H +B∗φ
�

uSMC(t) + d(t)
�

, because A∗
L
φ = λφ

σ̇(t) = λσ(t) +B∗φ
�

uSMC(t) + d(t)
�

.
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Sliding mode Control

We choose uSMC(t) = − 1
B∗φλσ(t) + c0(t). Then,

σ̇(t) = B∗φ
�

c0(t) + d(t)
�

. (24)

Thus, the following holds, for all t ≥ 0

1

2

d

dt
|σ(t)|2 =Re
�

σ̄(t)σ̇(t)
�

=Re

�

σ̄(t)B∗φ
�

c0(t) + d(t)
�

�

.
(25)

Assumption 2

The unknown disturbance d is supposed to be uniformly bounded
measurable, i.e |d(t)| ≤ Kd for some Kd > 0 and for all t ≥ 0.
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Sliding mode Control

Therefore, we choose c0(t) = − K
B∗φsign(σ(t), with K > Kd|B∗φ| and sign is

defined by

sign(s) =
� s
|s| if s ̸= 0,
[−1,1] if s = 0.

Then, we have, for all t ≥ 0

1

2

d

dt
|σ(t)|2 ≤ −(K − |B∗φ|Kd)|σ(t)|. (26)

As a consequence, there exists a finite time tr > 0, such that σ(t) = 0 for
any t ≥ tr.

Conclusion

With the control input u(t) = Lz(t)− 1
B∗φ

�

λσ(t) +Ksign(σ(t))
�

, the system

(1) reaches the sliding surface Σ in finite time tr and remains on it.
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Sliding mode Control

Closed-loop system











d

dt
z = ALz +B

�

d−
1

B∗φ

�

λσ +Ksign(σ)
�

�

,

z(0) = z0.

(27)

∀t ≥ tr , σ(t) = 0 =⇒ σ̇(t) = 0, ∀t ≥ tr .

Thus, from (23), we have

c0(t) + d(t) = 0, ∀t ≥ tr

i.e

d(t)−
K

B∗φ
sign(σ(t)) = 0, ∀t ≥ tr .
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Sliding mode Control

Then, the system (27) become for any t ≥ tr







d

dt
z = ALz,

z(0) = z0,
(28)

which is globally asymptotically stable around (0,0) from the item (iii) of
Assumption 1.
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Sliding mode Control

Theorem (Existence of closed-loop systems solutions)

Assume that Assumption 1 and Assumption 2 are satisfied. For any
initial condition z0 ∈ H, the system (27) admits a mild solution.

Theorem (Global asymptotic stability)

Assume that Assumption 1 and Assumption 2 are satisfied. For any
initial condition z0 ∈ H, 0 ∈ H is globally asymptotically stable for (27).
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Heat equation



















zt(t,x) = zxx(t,x), (t,x) ∈ R≥0 × [0,1],
zx(t,0) = c0z(t,0), t ∈ R+,

zx(t,1) = u(t) + d(t), t ∈ R+,

z(0,x) = z0(x),

(29)

This equation can be written in an abstract way as in (1) if one sets
H = L2(0,L),

A : D(A) ⊂ L2(0,L)→ L2(0,L),
z 7→ z′′,

(30)

where
D(A) := {z ∈ H2(0,1) | z′(0) = c0z(0);z′(1) = 0}. (31)
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Heat equation

The control operator B is the delta function in L(R,D(A)′) defined as
follow

〈φ,Bu〉D(A),D(A)′ = φ(1)u (32)

for all u ∈ R and φ ∈ D(A), where 〈·, ·〉D(A),D(A)′ is the dual product. The
adjoint operator of A is

A∗ : D(A∗) ⊂ H→ H,

z 7→ z′′,
(33)

with D(A∗) := {z ∈ H2(0,1) | z′(0) = c0z(0);z′(1) = 0}. It can be checked
that the operator A is self-adjoint in H. The adjoint of operator of B is

B∗ : D(A∗)→ R

φ 7→ φ(1).
(34)
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Heat equation

(J-J. Liu and J-M Wang, 2015) The operators A and B satisfy the items
(i) and (ii) Assumption 1.
(J-J. Liu and J-M Wang, 2015) The origin of



















zt(t,x) = zxx(t,x), (t,x) ∈ R≥0 × [0,1],
zx(t,0) = c0z(t,0), t ∈ R+,

zx(t,1) = 0, t ∈ R+,

z(0,x) = z0(x),

(35)

is globally exponentially stable in H. Thus, Item (iii) of Assumption 1
holds for the operator L equal to the zero operator.
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Heat equation

The eigenpairs (λ,φλ) of A satisfies


















λ < 0,

φλ(x) = cos(
p

−λx) +
c0
p
−λ

sin(
p

−λx),

p

−λ tan(
p

−λ) = c0.

(36)

The sliding variable and the feedback law under consideration are as
follows

σ(t) =

∫ L

0
z(t,x)φλ(x)dx and u(t) = −

1

φλ(1)

�

λσ(t) +Ksign(σ(t))
�

. (37)
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Heat equation

c0 = 0.5,
λ = −2c0 − π2

K = 2.5
z0(x) = 10x3

d(t) = 2 sin(t)
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