CTIP 2023-Control Theory and Inverse Problems

Sliding mode control for a class of linear infinite-dimensional systems

Ismaïla BALOGOUN

Laboratoire des Sciences du Numérique de Nantes (LS2N)
École Centrale de Nantes

Table of Contents

1 Introduction

2 A finite-dimensional example

3 Main results

4 Illustrative example

Introduction

Context: Sliding mode control design for the stabilization of a class of infinite-dimensional systems.
Linear abstract Cauchy problem:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} z=A z+B(u+d) \tag{1}\\
z(0)=z_{0}
\end{array}\right.
$$

$1 \mathbb{K}$ is either \mathbb{R} or \mathbb{C},
$2 H$ denotes a Hilbert space over the field \mathbb{K},
$3 A: D(A) \subseteq H \rightarrow H$ is a linear operator with $D(A)$ densely defined in H,
$4 B \in \mathcal{L}\left(\mathbb{K}, D\left(A^{*}\right)^{\prime}\right)$, with A^{*} the adjoint operator of A,
$5 z(t) \in H$ is the state, $u(t) \in \mathbb{K}$ is the control input and $d(t) \in \mathbb{K}$ is an unknown disturbance.

Introduction

Example

$$
\begin{align*}
& \left\{\begin{array}{l}
z_{t}(t, x)=z_{x x}(t, x), \quad(t, x) \in \mathbb{R}_{\geq 0} \times[0,1] \\
z_{x}(t, 0)=c_{0} z(t, 0), \quad t \in \mathbb{R}_{+}, \\
z_{x}(t, 1)=u(t)+d(t), \quad t \in \mathbb{R}_{+}, \\
z(0, x)=z_{0}(x),
\end{array}\right. \tag{2}\\
& \left\{\begin{array}{l}
z_{t t}(t, x)+z_{x x x x}(t, x)=0, \quad(t, x) \in \mathbb{R}_{\geq 0} \times[0,1], \\
z(t, 0)=z_{x}(t, 0)=0, \quad t \in \mathbb{R}_{+}, \\
z_{x x}(t, 1)=0, \quad t \in \mathbb{R}_{+}, \\
z_{x x x}(t, 1)=u(t)+d(t), \quad t \in \mathbb{R}_{+}, \\
z(0, x)=z_{0}(x),
\end{array}\right.
\end{align*}
$$

Introduction

Question

How can one propose a systematic methodology for the design of sliding variables for linear infinite-dimensional systems?

Table of Contents

1 Introduction

2 A finite-dimensional example

3 Main results

4 Illustrative example

Finite-dimensional example

Let us consider the following system

$$
\left\{\begin{array}{l}
\dot{z}_{1}=-z_{1}+z_{2} \tag{4}\\
\dot{z}_{2}=u+d
\end{array}\right.
$$

Nominal control
If $d=0$, the feedback-law

$$
\begin{equation*}
u:=u_{0}=-2 z_{2} \tag{5}
\end{equation*}
$$

provides asymptotic stability of the origin of (4).

If we select u as

$$
\begin{equation*}
u=u_{0}+u_{S M C} \tag{6}
\end{equation*}
$$

then system (4) can be written as follows:

$$
\begin{equation*}
\binom{\dot{z}_{1}}{\dot{z}_{2}}=A_{L}\binom{z_{1}}{z_{2}}+B\left(u_{S M C}+d\right) \tag{7}
\end{equation*}
$$

with

$$
A_{L}=A+B L, A=\left(\begin{array}{cc}
-1 & 1 \tag{8}\\
0 & 0
\end{array}\right), B=\binom{0}{1}, \text { and } L=\left(\begin{array}{ll}
0 & -2
\end{array}\right) .
$$

Finite-dimensional example

Let $\varphi=\binom{1}{1} \in \mathbb{R}^{2}$ be an eigenvector of A_{L}^{\top} and let us introduce the following surface

$$
\begin{equation*}
\Sigma:=\left\{\binom{z_{1}}{z_{2}} \in \mathbb{R}^{2} \left\lvert\,\left\langle\binom{ z_{1}}{z_{2}}, \varphi\right\rangle_{\mathbb{R}^{2}}=z_{1}+z_{2}=0\right.\right\} . \tag{9}
\end{equation*}
$$

On Σ the system (7) is equivalent to

$$
\left\{\begin{array}{l}
\dot{z}_{1}=-z_{1}+z_{2} \tag{10}\\
z_{2}=-z_{1}
\end{array}\right.
$$

Thus, z_{1} and z_{2} converge to zero asymptotically.

Finite-dimensional example

Let us introduce a new variable σ given by

$$
\begin{equation*}
\sigma=\left\langle\binom{ z_{1}}{z_{2}}, \varphi\right\rangle_{\mathbb{R}^{2}} . \tag{11}
\end{equation*}
$$

From (7), the σ-dynamics yields

$$
\begin{align*}
\dot{\sigma} & =\left\langle\binom{\dot{z}_{1}}{\dot{z}_{2}}, \varphi\right\rangle_{\mathbb{R}^{2}}=\left\langle A_{L}\binom{z_{1}}{z_{2}}+B\left(u_{S M C}+d\right), \varphi\right\rangle_{\mathbb{R}^{2}} \\
& =\left\langle A_{L}\binom{z_{1}}{z_{2}}, \varphi\right\rangle_{\mathbb{R}^{2}}+\langle B, \varphi\rangle_{\mathbb{R}^{2}}\left(u_{S M C}+d\right) \tag{12}
\end{align*}
$$

Since φ is an eigenvector of A_{L}^{\top} and $\langle B, \varphi\rangle_{\mathbb{R}^{2}}=1$, then we obtain

$$
\begin{equation*}
\dot{\sigma}=\lambda \sigma+u_{S M C}+d . \tag{13}
\end{equation*}
$$

Finite-dimensional example

Thus, the following holds, for all $t \geq 0$

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|\sigma|^{2}=\sigma \dot{\sigma}=\sigma\left(\lambda \sigma+u_{S M C}+d\right)=\lambda \sigma^{2}+\sigma\left(u_{S M C}+d\right) \tag{14}
\end{equation*}
$$

Since $\lambda=-1<0$ then, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|\sigma|^{2} \leq+\sigma u_{S M C}+|\sigma||d| \tag{15}
\end{equation*}
$$

Therefore, if we assume that d is bounded, i.e $\|d\|_{L^{\infty}\left(\mathbb{R}_{+}\right)} \leq M$ with $M>0$, then by selecting

$$
\begin{equation*}
u_{S M C}=-\rho \operatorname{sign}(\sigma) \tag{16}
\end{equation*}
$$

with $\rho>M$, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|\sigma|^{2} \leq-|\sigma|(\rho-M) \tag{17}
\end{equation*}
$$

As a consequence, σ reaches zero in a finite-time t_{r} that is bounded by

$$
\begin{equation*}
t_{r} \leq \frac{|\sigma(0)|}{\rho-M} \tag{18}
\end{equation*}
$$

Conclusion

With the control input $u=-2 z_{2}-\rho \operatorname{sign}(\sigma)$, the system (4) reaches the sliding surface Σ in finite time t_{r} and remains on it.

Table of Contents

1 Introduction

2 A finite-dimensional example

3 Main results

4 Illustrative example

Assumption 1

The following statements hold.
(i) The operator $A: D(A) \subseteq H \rightarrow H$ generates a strongly continuous semigroup, that is denoted by $(\mathbb{T}(t))_{t \geq 0}$.
(ii) The operator B is admissible for $(\mathbb{T}(t))_{t \geq 0}$.

Assumption 1

(iii) There exists an operator $L: D(L) \rightarrow \mathbb{K}$ such that the operator

$$
\left\{\begin{array}{l}
A_{L}=A+B L \tag{19}\\
D\left(A_{L}\right)=\{z \in D(L) ;(A+B L) z \in H\}
\end{array}\right.
$$

is the infinitesimal generator of a strongly continuous semigroup $(\mathbb{S}(t))_{t \geq 0}$ on H and the origin of the following system

$$
\left\{\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} z & =(A+B L) z \tag{20}\\
z(0) & =z_{0}
\end{align*}\right.
$$

is globally asymptotically stable.

Sliding surface

Let $\varphi \in D\left(A_{L}^{*}\right)$ is an eigenfunction of A_{L}^{*} such that $B^{*} \varphi \neq 0$ and λ the eigenvalue associated with φ. We define the sliding surface as follow Σ

$$
\Sigma:=\left\{z \in H \mid\langle\varphi, z\rangle_{H}=0\right\} .
$$

Its related sliding variable $\sigma: \mathbb{R}_{+} \rightarrow \mathbb{K}$ is defined by

$$
\begin{equation*}
\sigma(t):=\langle\varphi, z(t)\rangle_{H} \tag{21}
\end{equation*}
$$

for any solution z of (1).

We consider the control u to be

$$
\begin{equation*}
u=L z+u_{S M C} \tag{22}
\end{equation*}
$$

Formally, the derivative of σ along the trajectory of (1) and (22) yields,for all $t \geq 0$

$$
\begin{align*}
\dot{\sigma}(t) & =\left\langle\varphi, \frac{\mathrm{d}}{\mathrm{~d} t} z(t)\right\rangle_{H} \\
& =\left\langle\varphi, A_{L} z(t)\right\rangle_{H}+B^{*} \varphi\left(u_{S M C}(t)+d(t)\right) \\
& =\left\langle A_{L}^{*} \varphi, z(t)\right\rangle_{H}+B^{*} \varphi\left(u_{S M C}(t)+d(t)\right) \tag{23}\\
& =\lambda\langle\varphi, z(t)\rangle_{H}+B^{*} \varphi\left(u_{S M C}(t)+d(t)\right), \quad \text { because } A_{L}^{*} \varphi=\lambda \varphi \\
\dot{\sigma}(t) & =\lambda \sigma(t)+B^{*} \varphi\left(u_{S M C}(t)+d(t)\right)
\end{align*}
$$

Sliding mode Control

We choose $u_{S M C}(t)=-\frac{1}{B^{*} \varphi} \lambda \sigma(t)+c_{0}(t)$. Then,

$$
\begin{equation*}
\dot{\sigma}(t)=B^{*} \varphi\left(c_{0}(t)+d(t)\right) \tag{24}
\end{equation*}
$$

Thus, the following holds, for all $t \geq 0$

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}|\sigma(t)|^{2} & =\mathfrak{R e}(\bar{\sigma}(t) \dot{\sigma}(t)) \tag{25}\\
& =\mathfrak{k e}\left(\bar{\sigma}(t) B^{*} \varphi\left(c_{0}(t)+d(t)\right)\right)
\end{align*}
$$

Assumption 2

The unknown disturbance d is supposed to be uniformly bounded measurable, i.e $|d(t)| \leq K_{d}$ for some $K_{d}>0$ and for all $t \geq 0$.

Sliding mode Control

Therefore, we choose $c_{0}(t)=-\frac{K}{B^{*} \varphi} \operatorname{sign}\left(\sigma(t)\right.$, with $K>K_{d}\left|B^{*} \varphi\right|$ and sign is defined by

$$
\operatorname{sign}(s)= \begin{cases}\frac{s}{|s|} & \text { if } s \neq 0 \\ {[-1,1]} & \text { if } s=0\end{cases}
$$

Then, we have, for all $t \geq 0$

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|\sigma(t)|^{2} \leq-\left(K-\left|B^{*} \varphi\right| K_{d}\right)|\sigma(t)| \tag{26}
\end{equation*}
$$

As a consequence, there exists a finite time $t_{r}>0$, such that $\sigma(t)=0$ for any $t \geq t_{r}$.

Conclusion

With the control input $u(t)=L z(t)-\frac{1}{B^{*} \varphi}(\lambda \sigma(t)+K \operatorname{sign}(\sigma(t)))$, the system
(1) reaches the sliding surface Σ in finite time t_{r} and remains on it.

Sliding mode Control

Closed-loop system

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} z=A_{L} z+B\left(d-\frac{1}{B^{*} \varphi}(\lambda \sigma+K \operatorname{sign}(\sigma))\right), \tag{27}\\
z(0)=z_{0} .
\end{array}\right.
$$

$$
\forall t \geq t_{r}, \quad \sigma(t)=0 \Longrightarrow \dot{\sigma}(t)=0, \quad \forall t \geq t_{r} .
$$

Thus, from (23), we have

$$
c_{0}(t)+d(t)=0, \quad \forall t \geq t_{r}
$$

i.e

$$
d(t)-\frac{K}{B^{*} \varphi} \operatorname{sign}(\sigma(t))=0, \quad \forall t \geq t_{r} .
$$

Then, the system (27) become for any $t \geq t_{r}$

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} z=A_{L} z \tag{28}\\
z(0)=z_{0},
\end{array}\right.
$$

which is globally asymptotically stable around $(0,0)$ from the item (iii) of Assumption 1.

Theorem (Existence of closed-loop systems solutions)

Assume that Assumption 1 and Assumption 2 are satisfied. For any initial condition $z_{0} \in H$, the system (27) admits a mild solution.

Theorem (Global asymptotic stability)

Assume that Assumption 1 and Assumption 2 are satisfied. For any initial condition $z_{0} \in H, 0 \in H$ is globally asymptotically stable for (27).

Table of Contents

1 Introduction

2 A finite-dimensional example

3 Main results

4 Illustrative example

$$
\left\{\begin{array}{l}
z_{t}(t, x)=z_{x x}(t, x), \quad(t, x) \in \mathbb{R}_{\geq 0} \times[0,1] \tag{29}\\
z_{x}(t, 0)=c_{0} z(t, 0), \quad t \in \mathbb{R}_{+}, \\
z_{x}(t, 1)=u(t)+d(t), \quad t \in \mathbb{R}_{+} \\
z(0, x)=z_{0}(x)
\end{array}\right.
$$

This equation can be written in an abstract way as in (1) if one sets $H=L^{2}(0, L)$,

$$
\begin{align*}
A: D(A) \subset L^{2}(0, L) & \rightarrow L^{2}(0, L), \\
z & \mapsto z^{\prime \prime}, \tag{30}
\end{align*}
$$

where

$$
\begin{equation*}
D(A):=\left\{z \in \mathcal{H}^{2}(0,1) \mid z^{\prime}(0)=c_{0} z(0) ; z^{\prime}(1)=0\right\} . \tag{31}
\end{equation*}
$$

Heat equation

The control operator B is the delta function in $\mathcal{L}\left(\mathbb{R}, D(A)^{\prime}\right)$ defined as follow

$$
\begin{equation*}
\langle\varphi, B u\rangle_{D(A), D(A)^{\prime}}=\varphi(1) u \tag{32}
\end{equation*}
$$

for all $u \in \mathbb{R}$ and $\varphi \in D(A)$, where $\langle\cdot, \cdot\rangle_{D(A), D(A)^{\prime}}$ is the dual product. The adjoint operator of A is

$$
\begin{align*}
A^{*}: D\left(A^{*}\right) \subset H & \rightarrow H, \\
& z \mapsto z^{\prime \prime}, \tag{33}
\end{align*}
$$

with $D\left(A^{*}\right):=\left\{z \in \mathcal{H}^{2}(0,1) \mid z^{\prime}(0)=c_{0} z(0) ; z^{\prime}(1)=0\right\}$. It can be checked that the operator A is self-adjoint in H. The adjoint of operator of B is

$$
\begin{align*}
B^{*}: D\left(A^{*}\right) & \rightarrow \mathbb{R} \tag{34}\\
\varphi & \mapsto \varphi(1) .
\end{align*}
$$

Heat equation

■ (J-J. Liu and J-M Wang, 2015) The operators A and B satisfy the items (i) and (ii) Assumption 1.

■ (J-J. Liu and J-M Wang, 2015) The origin of

$$
\left\{\begin{array}{l}
z_{t}(t, x)=z_{x x}(t, x), \quad(t, x) \in \mathbb{R}_{\geq 0} \times[0,1], \tag{35}\\
z_{x}(t, 0)=c_{0} z(t, 0), \quad t \in \mathbb{R}_{+}, \\
z_{x}(t, 1)=0, \quad t \in \mathbb{R}_{+}, \\
z(0, x)=z_{0}(x),
\end{array}\right.
$$

is globally exponentially stable in H. Thus, Item (iii) of Assumption 1 holds for the operator L equal to the zero operator.

Heat equation

The eigenpairs $\left(\lambda, \varphi_{\lambda}\right)$ of A satisfies

$$
\left\{\begin{array}{l}
\lambda<0 \tag{36}\\
\varphi_{\lambda}(x)=\cos (\sqrt{-\lambda} x)+\frac{c_{0}}{\sqrt{-\lambda}} \sin (\sqrt{-\lambda} x), \\
\sqrt{-\lambda} \tan (\sqrt{-\lambda})=c_{0} .
\end{array}\right.
$$

The sliding variable and the feedback law under consideration are as follows

$$
\begin{equation*}
\sigma(t)=\int_{0}^{L} z(t, x) \varphi_{\lambda}(x) d x \quad \text { and } \quad u(t)=-\frac{1}{\varphi_{\lambda}(1)}(\lambda \sigma(t)+K \operatorname{sign}(\sigma(t))) . \tag{37}
\end{equation*}
$$

Heat equation

$z(t, x)$

- $c_{0}=0.5$,
- $\lambda=-2 c_{0}-\pi^{2}$

■ $K=2.5$
$\square z_{0}(x)=10 x^{3}$

- $d(t)=2 \sin (t)$

$\mathbf{u}(\mathrm{t})$

