Some insights on the practical control of hyperbolic systems

Jean Auriol

L2S, CNRS, Université Paris-Saclay, UMR 8506

May 8, 2023

Introduction: Hyperbolic systems

- Phenomena with finite propagation speeds: waves, balance laws, conservation laws.

$$
\partial_{t t} w(t, x)-c^{2} \partial_{x x} w(t, x)=0
$$

- Examples: mass, charge, energy, momentum
- Complex engineering problems: stabilization, observer design, parameter estimation.

Stringent operating, environmental and economical requirement

Introduction: Hyperbolic systems

- Phenomena with finite propagation speeds: waves, balance laws, conservation laws.

$$
\partial_{t t} w(t, x)-c^{2} \partial_{x x} w(t, x)=0
$$

- Examples: mass, charge, energy, momentum
- Complex engineering problems: stabilization, observer design, parameter estimation.

Stringent operating, environmental and economical requirement

Control and estimation of mechanical vibrations

Control of a micro-endoscope

Introduction: Hyperbolic systems

- Phenomena with finite propagation speeds: waves, balance laws, conservation laws.

$$
\partial_{t t} w(t, x)-c^{2} \partial_{x x} w(t, x)=0
$$

- Examples: mass, charge, energy, momentum
- Complex engineering problems: stabilization, observer design, parameter estimation.

Stringent operating, environmental and economical requirement

Traffic congestion control (avoid stop-and-go oscillations)

Introduction: general objective

Objective

Develop a systematic framework for the practical control of hyperbolic systems

- Design of explicit control laws: constructive methods.
- Easily implementable strategies: low computational burden.
- Possible real implementation: performance specifications.

Introduction: general objective

Objective

Develop a systematic framework for the practical control of hyperbolic systems

- Design of explicit control laws: constructive methods.
- Easily implementable strategies: low computational burden.
- Possible real implementation: performance specifications.

Multiple theoretical approaches

- Optimization controllers [Russel, Lions]
- Lyapunov-based controllers [Bastin, Coron, Prieur]
- Flatness-based methods [Meurer]
- Backstepping controllers [Krstic]

Breakthroughs but several practical limitations.

Toy problem: clamped string

Toy system: clamped string with indefinite in-domain damping and space-varying coefficients
\longrightarrow towards generalization to more complex systems

$$
\rho(x) \frac{\partial^{2} w}{\partial t^{2}}(t, x)=\frac{\partial}{\partial x}\left(E(x) \frac{\partial w}{\partial x}(t, x)\right)-\kappa(x) \frac{\partial w}{\partial t}(t, x)
$$

$\rho(x)$ mass density, $E(x)$ Young's modulus $\in C^{1}([0,1])^{+}, \kappa(x) \in C^{0}([0,1])$ in-domain damping.

Boundary conditions:

- No movement in $x=0:\left.\frac{\partial w}{\partial t}\right|_{x=0}(t)=0$
- Torque control input in $x=1:\left.E(1) \frac{\partial w}{\partial x}\right|_{x=1}(t)=U(t)$

Initial conditions: $w(0, x)=w_{0}(x) \in C^{1}([0,1])$.
$\underline{\text { Riemann coordinates: }} u(t, x)=w_{t}(t, x)-\sqrt{\frac{E(x)}{\rho(x)}} w_{x}(t, x), v(t, x)=w_{t}(t, x)+\sqrt{\frac{E(x)}{\rho(x)}} w_{x}(t, x)$

System under consideration

System of scalar balance laws: simple test case to present generic concepts

$$
\begin{aligned}
& u_{t}(t, x)+\lambda(x) u_{x}(t, x)=\sigma^{++}(x) u(t, x)+\sigma^{+}(x) v(t, x), \\
& v_{t}(t, x)-\mu(x) v_{x}(t, x)=\sigma^{--}(x) v(t, x)+\sigma^{-}(x) u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

- Diagonal terms can be removed with exp. change of coordinates.
- Couplings \rightarrow instability.
- Distributed states and boundary control.

Outline of the presentation

(1) An introduction to the backstepping approach

2 Design of robust control laws for hyperbolic systems
(3) Development of easily parametrizable target systems.
4. Integration, approximation, and model reduction.

Backstepping for PDEs

- Extension of finite-dimensional backstepping [Krstic et al.; 1995]
- Introduced for parabolic PDEs [Balogh, Krstic; 2002]
- Second-order hyperbolic PDEs [Krstic et al.; 2006]
- First-order hyperbolic PDEs [Krstic, Smyshlyaev; 2008]
- Systems of First-order hyperbolic PDEs [Vazquez; 2012], [Di Meglio et al.; 2013]

Backstepping methodology

Main idea Use an integral transform (classically Volterra transform of the second kind):

$$
w(t, x)=u(t, x)-\int_{0}^{x} p(x, y) u(t, y) d y
$$

to map the original system (to stabilize) to a stable target system .
\longrightarrow Constructive design of control laws!

Limitations

- Choice of an adequate target system
- Proof of existence and invertibility of an adequate transform
- Control effort, closed-loop properties and implementation

Example of two scalar equations: backstepping transformation

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x), \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x), \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v(t) .
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{0} \xrightarrow{\stackrel{1}{\longrightarrow}}
\end{aligned}
$$

Example of two scalar equations: backstepping transformation

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

- Map the original system to a target system for which the stability analysis is easier.
- Variable change: integral transformation.

$$
\begin{array}{ll}
\text { Example: } & \alpha(t, x)=u(t, x)-\int_{0}^{x} K^{u u}(x, \xi) u(t, \xi)+K^{u v}(x, \xi) v(t, \xi) d \xi \\
& \beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi
\end{array}
$$

Example of two scalar equations: backstepping transformation

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

- Map the original system to a target system for which the stability analysis is easier.
- Variable change: integral transformation.

$$
\begin{array}{ll}
\text { Example: } & \alpha(t, x)=u(t, x)-\int_{0}^{x} K^{u u}(x, \xi) u(t, \xi)+K^{u v}(x, \xi) v(t, \xi) d \xi \\
& \beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi
\end{array}
$$

Difficulties:

- Find the target system.
- Existence of the kernel K (set of PDEs to be satisfied).

Objective: Move the in-domain coupling terms at the actuated boundary.

Objective: Move the in-domain coupling terms at the actuated boundary.

Objective: Move the in-domain coupling terms at the actuated boundary.

$$
\begin{aligned}
u_{t}(t, x)+\lambda u_{x}(t, x) & =\sigma^{+} v(t, x) \\
v_{t}(t, x)-\mu v_{x}(t, x) & =\sigma^{-} u(t, x)
\end{aligned}
$$

$$
\begin{aligned}
& u(t, 0)=q v(t, 0) \\
& v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

$$
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0
$$

$$
\beta_{t}(t, x)-\mu \beta_{x}(t, x)=0
$$

$\alpha(t, 0)=q \beta(t, 0)$
$\beta(t, 1)=\rho \alpha(t, 1)+V(t)$
$-\int_{0}^{1} N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi) d \xi$.

Objective: Move the in-domain coupling terms at the actuated boundary.

$$
\begin{aligned}
u_{t}(t, x)+\lambda u_{x}(t, x) & =\sigma^{+} v(t, x) \\
v_{t}(t, x)-\mu v_{x}(t, x) & =\sigma^{-} u(t, x)
\end{aligned}
$$

$$
\begin{aligned}
& u(t, 0)=q v(t, 0) \\
& v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

$$
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0
$$

$$
\beta_{t}(t, x)-\mu \beta_{x}(t, x)=0
$$

$\alpha(t, 0)=q \beta(t, 0)$
$\beta(t, 1)=\rho \alpha(t, 1)+V(t)$
$-\int_{0}^{1} N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi) d \xi$.

Natural control law
$V(t)=-\rho \alpha(t, 1)+\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi$.

Backstepping transformation

$$
\beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi \text {. }
$$

Backstepping transformation

$$
\beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi \text {. }
$$

We have: $v_{t}-\mu v_{x}=\sigma^{-} u$
We want: $\beta_{t}-\mu \beta_{x}=0$

Backstepping transformation

$$
\beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi \text {. }
$$

We have: $v_{t}-\mu v_{x}=\sigma^{-} u$
We want: $\beta_{t}-\mu \beta_{x}=0$

Differentiation w.r.t space

$$
\begin{aligned}
-\mu \beta_{x}(t, x) & =-\mu v_{x}(t, x)+\mu K^{v u}(x, x) u(t, x)+\mu K^{v v}(x, x) v(t, x) \\
& +\int_{0}^{x} \mu K_{x}^{v u}(x, \xi) u(t, \xi)+\mu K_{x}^{v v}(x, \xi) v(t, \xi) d \xi
\end{aligned}
$$

Backstepping transformation

$$
\beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi \text {. }
$$

We have: $v_{t}-\mu v_{x}=\sigma^{-} u$
We want: $\quad \beta_{t}-\mu \beta_{x}=0$

Differentiation w.r.t space

$$
\begin{aligned}
-\mu \beta_{x}(t, x) & =-\mu v_{x}(t, x)+\mu K^{v u}(x, x) u(t, x)+\mu K^{v v}(x, x) v(t, x) \\
& +\int_{0}^{x} \mu K_{x}^{v u}(x, \xi) u(t, \xi)+\mu K_{x}^{v v}(x, \xi) v(t, \xi) d \xi
\end{aligned}
$$

Differentiation w.r.t time

$$
\begin{aligned}
\beta_{t}(t, x) & =v_{t}(t, x)-\int_{0}^{x}-K^{v u}(x, \xi) \lambda u_{x}(t, \xi)+K^{v v}(x, \xi) \mu v_{x}(x, \xi) \\
& -\int_{0}^{x} K^{v u}(x, \xi) \sigma^{+} v(t, \xi)+K^{v v}(x, \xi) \sigma^{-} u(t, \xi) d \xi
\end{aligned}
$$

Backstepping transformation

$$
\beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi \text {. }
$$

We have: $v_{t}-\mu v_{x}=\sigma^{-} u$
We want: $\beta_{t}-\mu \beta_{x}=0$

Differentiation w.r.t space

$$
\begin{aligned}
-\mu \beta_{x}(t, x) & =-\mu v_{x}(t, x)+\mu K^{v u}(x, x) u(t, x)+\mu K^{v v}(x, x) v(t, x) \\
& +\int_{0}^{x} \mu K_{x}^{v u}(x, \xi) u(t, \xi)+\mu K_{x}^{v v}(x, \xi) v(t, \xi) d \xi
\end{aligned}
$$

Differentiation w.r.t time

$$
\begin{aligned}
\beta_{t}(t, x) & =v_{t}(t, x)-\int_{0}^{x}-K^{v u}(x, \xi) \lambda u_{x}(t, \xi)+K^{v v}(x, \xi) \mu v_{x}(x, \xi) \\
& -\int_{0}^{x} K^{v u}(x, \xi) \sigma^{+} v(t, \xi)+K^{v v}(x, \xi) \sigma^{-} u(t, \xi) d \xi
\end{aligned}
$$

Integration by parts + use of B.Cs.

Backstepping transformation

$$
\beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi \text {. }
$$

We have: $\quad v_{t}-\mu v_{x}=\sigma^{-} u$
We want: $\quad \beta_{t}-\mu \beta_{x}=0$

Differentiation w.r.t space

$$
\begin{aligned}
-\mu \beta_{x}(t, x) & =-\mu v_{x}(t, x)+\mu K^{v u}(x, x) u(t, x)+\mu K^{v v}(x, x) v(t, x) \\
& +\int_{0}^{x} \mu K_{x}^{v u}(x, \xi) u(t, \xi)+\mu K_{x}^{\nu v}(x, \xi) v(t, \xi) d \xi
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{t}(t, x)=\mu v_{x}(t, x)+\sigma^{-} u(t, x)+\lambda K^{v u}(x, x) u(t, x)-\mu K^{v v}(x, x) v(t, x) \\
& -\lambda K^{v u}(x, 0) u(t, 0)-\mu K^{v v}(x, 0) v(t, 0)-\int_{0}^{x} K_{\xi}^{v u}(x, \xi) \lambda u(t, \xi) d \xi \\
& -\int_{0}^{x} K_{\xi}^{v v}(x, \xi) \mu v(t, \xi)+K^{v u}(x, \xi) \sigma^{+} v(t, \xi)+K^{v v}(x, \xi) \sigma^{-} u(t, \xi) d \xi
\end{aligned}
$$

Backstepping transformation

$$
\beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi \text {. }
$$

We have: $v_{t}-\mu v_{x}=\sigma^{-} u$
We want: $\quad \beta_{t}-\mu \beta_{x}=0$

Differentiation w.r to space

$$
\begin{aligned}
-\mu \beta_{x}(t, x) & =-\mu v_{x}(t, x)+\mu K^{v u}(x, x) u(t, x)+\mu K^{v v}(x, x) v(t, x) \\
& +\int_{0}^{x} \mu K_{x}^{v u}(x, \xi) u(t, \xi)+\mu K_{x}^{v v}(x, \xi) v(t, \xi) d \xi
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{t}(t, x)=\mu v_{x}(t, x)+\sigma^{-} u(t, x)+\lambda K^{v u}(x, x) u(t, x)-\mu K^{v v}(x, x) v(t, x) \\
& -\lambda K^{v u}(x, 0) u(t, 0)-\mu K^{v v}(x, 0) v(t, 0)-\int_{0}^{x} K_{\xi}^{v u}(x, \xi) \lambda u(t, \xi) d \xi \\
& -\int_{0}^{x} K_{\xi}^{v v}(x, \xi) \mu v(t, \xi)+K^{v u}(x, \xi) \sigma^{+} v(t, \xi)+K^{v v}(x, \xi) \sigma^{-} u(t, \xi) d \xi
\end{aligned}
$$

Kernel equations

$$
\begin{aligned}
0 & =\beta_{t}(t, x)-\mu \beta_{x}(t, x) \\
& =\left(\sigma^{-+}+\lambda K^{v u}(x, x)+\mu K^{v u}(x, x)\right) u(t, x)+\left(\lambda K^{v u}(x, 0) q-\mu K^{\nu v}(x, 0)\right) v(t, 0) \\
& -\int_{0}^{x}\left(\lambda K_{\xi}^{v u}(x, \xi)-\mu K_{x}^{v u}(x, \xi)+K^{v v}(x, \xi) \sigma^{-}\right) u(t, \xi) d \xi \\
& -\int_{0}^{x}\left(\mu K_{\xi}^{v \nu}(x, \xi)+\mu K_{x}^{v v}(x, \xi)+K^{v u}(x, \xi) \sigma^{+}\right) v(t, \xi) d \xi .
\end{aligned}
$$

Kernel equations

$$
\begin{aligned}
0 & =\beta_{t}(t, x)-\mu \beta_{x}(t, x) \\
& =\left(\sigma^{-+}+\lambda K^{v u}(x, x)+\mu K^{v u}(x, x)\right) u(t, x)+\left(\lambda K^{v u}(x, 0) q-\mu K^{v v}(x, 0)\right) v(t, 0) \\
& -\int_{0}^{x}\left(\lambda K_{\xi}^{v u}(x, \xi)-\mu K_{x}^{v u}(x, \xi)+K^{v v}(x, \xi) \sigma^{-}\right) u(t, \xi) d \xi \\
& -\int_{0}^{x}\left(\mu K_{\xi}^{v v}(x, \xi)+\mu K_{x}^{v v}(x, \xi)+K^{v u}(x, \xi) \sigma^{+}\right) v(t, \xi) d \xi . \\
& \left\{\begin{array}{l}
\mu K_{\xi}^{v v}(x, \xi)+\mu K_{x}^{v v}(x, \xi)=-K^{v u}(x, \xi) \sigma^{-}, \\
\lambda K_{\xi}^{v u}(x, \xi)-\mu K_{x}^{v u}(x, \xi)=-K^{v v}(x, \xi) \sigma^{-}, \\
\lambda K^{v u}(x, 0) q=\mu K^{v v}(x, 0), \quad K^{v u}(x, x)=\frac{\sigma^{-}}{\lambda+\mu}
\end{array}\right.
\end{aligned}
$$

Kernel equations

$$
\begin{aligned}
0 & =\beta_{t}(t, x)-\mu \beta_{x}(t, x) \\
& =\left(\sigma^{-+}+\lambda K^{v u}(x, x)+\mu K^{v u}(x, x)\right) u(t, x)+\left(\lambda K^{v u}(x, 0) q-\mu K^{v v}(x, 0)\right) v(t, 0) \\
& -\int_{0}^{x}\left(\lambda K_{\xi}^{v u}(x, \xi)-\mu K_{x}^{v u}(x, \xi)+K^{v v}(x, \xi) \sigma^{-}\right) u(t, \xi) d \xi \\
& -\int_{0}^{x}\left(\mu K_{\xi}^{v v}(x, \xi)+\mu K_{x}^{v v}(x, \xi)+K^{v u}(x, \xi) \sigma^{+}\right) v(t, \xi) d \xi . \\
& \left\{\begin{array}{l}
\mu K_{\xi}^{v v}(x, \xi)+\mu K_{x}^{v v}(x, \xi)=-K^{v u}(x, \xi) \sigma^{-} \\
\lambda K_{\xi}^{v u}(x, \xi)-\mu K_{x}^{v u}(x, \xi)=-K^{v v}(x, \xi) \sigma^{-} \\
\lambda K^{v u}(x, 0) q=\mu K^{v v}(x, 0), \quad K^{v u}(x, x)=\frac{\sigma^{-}}{\lambda+\mu}
\end{array}\right.
\end{aligned}
$$

- Integral equations + successive approximations \rightarrow Well-posedness.
- Invertibility of the Volterra transformation.

Finite-time stabilization?

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0, \quad \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0, \\
\alpha(t, 0)= & q \beta(t, 0), \\
\beta(t, 1)= & \rho \alpha(t, 1)-\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi+V(t) .
\end{aligned}
$$

Finite-time stabilization?

$$
\begin{gathered}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0, \quad \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \\
\alpha(t, 0)=q \beta(t, 0) \\
\beta(t, 1)=\rho \alpha(t, 1)-\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi+V(t) \\
V(t)=-\rho \alpha(t, 1)+\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi \\
\beta(t, x)=\beta\left(t-\frac{1-x}{\mu}, 1\right)=0, \quad \alpha(t, x)=\alpha\left(t-\frac{x}{\lambda}, 0\right)=q \beta\left(t-\frac{x}{\lambda}, 0\right)=0
\end{gathered}
$$

The system is finite-time stable!

Finite-time stabilization?

$$
\begin{aligned}
& \quad \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0, \quad \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0, \\
& \alpha(t, 0)=q \beta(t, 0), \\
& \beta(t, 1)=\rho \alpha(t, 1)-\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi+V(t) . \\
& V(t)=-\rho \alpha(t, 1)+\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi
\end{aligned}
$$

What if we add a delay?

Finite-time stabilization?

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0, \quad \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0, \\
& \alpha(t, 0)=q \beta(t, 0), \\
& \beta(t, 1)=\rho \alpha(t, 1)-\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi+V(t) . \\
& V(t)=-\rho \alpha(t, 1)+\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi
\end{aligned}
$$

Finite-time stabilization?

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0, \quad \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0, \\
& \alpha(t, 0)=q \beta(t, 0), \\
& \beta(t, 1)=\rho \alpha(t, 1)-\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi+V(t) . \\
& V(t)=-\rho \alpha(t, 1)+\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi
\end{aligned}
$$

Finite time convergence: performance \gg robustness.

Robustness analysis

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0 \\
& \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \\
\alpha(t, 0)= & q \beta(t, 0) \\
\beta(t, 1)= & \rho \alpha(t, 1)-\int_{0}^{1}\left(N^{\alpha} \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi+V(t)
\end{aligned}
$$

Robustness analysis

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0 \rightarrow \text { Transport equation } \\
& \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \rightarrow \text { Transport equation } \\
\alpha(t, 0)= & q \beta(t, 0) \\
\beta(t, 1)= & \rho \alpha(t, 1)-\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi+V(t)
\end{aligned}
$$

Robustness analysis

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0 \rightarrow \text { Transport equation } \\
& \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \rightarrow \text { Transport equation } \\
\alpha(t, 0)= & q \beta(t, 0) \\
\beta(t, 1)= & \rho \alpha(t, 1)-\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi+V(t)
\end{aligned}
$$

Difference equation satisfied by $\beta(t, 1)$
For all $t>\frac{1}{\lambda}+\frac{1}{\mu}=\tau$, we have

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi+V(t)
$$

Delay-robust stabilization

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi+V(t)
$$

Delay δ acting on $V(t)=-\rho q \beta(t-\tau, 1)+\int_{0}^{1} N(\xi) \beta(t-\xi, 1) d \xi$.

Delay-robust stabilization

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi+V(t)
$$

Delay δ acting on $V(t)=-\rho q \beta(t-\tau, 1)+\int_{0}^{1} N(\xi) \beta(t-\xi, 1) d \xi$.
Closed-loop system:

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\rho q \beta(t-\tau-\delta, 1)-\int_{0}^{\tau} N(\xi)(\beta(t-\xi, 1)-\beta(t-\delta-\xi, 1)) d \xi .
$$

Delay-robust stabilization

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi+V(t)
$$

Delay δ acting on $V(t)=-\rho q \beta(t-\tau, 1)+\int_{0}^{1} N(\xi) \beta(t-\xi, 1) d \xi$.
Closed-loop system:

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\rho q \beta(t-\tau-\delta, 1)-\int_{0}^{\tau} N(\xi)(\beta(t-\xi, 1)-\beta(t-\delta-\xi, 1)) d \xi .
$$

\Rightarrow Problem if $|\rho q| \geq \frac{1}{2}$

Delay-robust stabilization

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi+V(t)
$$

Delay δ acting on $V(t)=-\rho q \beta(t-\tau, 1)+\int_{0}^{1} N(\xi) \beta(t-\xi, 1) d \xi$.
Closed-loop system:

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\rho q \beta(t-\tau-\delta, 1)-\int_{0}^{\tau} N(\xi)(\beta(t-\xi, 1)-\beta(t-\delta-\xi, 1)) d \xi .
$$

\Rightarrow Problem if $|\rho q| \geq \frac{1}{2}$

Solution: renounce to finite-time stabilization

$$
V(t)=-\tilde{\rho} q \beta(t-\tau, 1)+\int_{0}^{1} N(\xi) \beta(t-\xi, 1) d \xi
$$

Delay-robustness under the NSC $|\tilde{\rho}|<\frac{1-|\rho q|}{|q|}$.

Open-loop analysis: $V(t) \equiv 0$

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi
$$

Open-loop analysis: $V(t) \equiv 0$

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi
$$

Open loop analysis

If the open loop transfer function has an infinite number of poles in the RHP, the system cannot be delay-robustly stabilized.

Open-loop analysis: $V(t) \equiv 0$

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi
$$

Open loop analysis

If the open loop transfer function has an infinite number of poles in the RHP, the system cannot be delay-robustly stabilized.

Open-loop characteristic equation:

$$
D(s)=\underbrace{1-\rho q e^{-\tau s}}_{F(s)}+\underbrace{\int_{0}^{\tau} N(\xi) e^{-\xi s} d \xi}_{H(s)}=0
$$

Open-loop analysis: $V(t) \equiv 0$

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi
$$

Open loop analysis

If the open loop transfer function has an infinite number of poles in the RHP, the system cannot be delay-robustly stabilized.

Open-loop characteristic equation:

$$
D(s)=\underbrace{1-\rho q e^{-\tau s}}_{F(s)}+\underbrace{\int_{0}^{\tau} N(\xi) e^{-\xi s} d \xi}_{H(s)}=0
$$

If $|\rho q|>1$: F has an infinite number of zeros in the RHP and H is proper. Thus D has an infinite number of zeros in the RHP

Open-loop analysis: $V(t) \equiv 0$

$$
\beta(t, 1)=\rho q \beta(t-\tau, 1)-\int_{0}^{\tau} N(\xi) \beta(t-\xi, 1) d \xi
$$

Open loop analysis

If the open loop transfer function has an infinite number of poles in the RHP, the system cannot be delay-robustly stabilized.

Open-loop characteristic equation:

$$
D(s)=\underbrace{1-\rho q e^{-\tau s}}_{F(s)}+\underbrace{\int_{0}^{\tau} N(\xi) e^{-\xi s} d \xi}_{H(s)}=0
$$

If $|\rho q|>1: F$ has an infinite number of zeros in the RHP and H is proper. Thus D has an infinite number of zeros in the RHP
\Rightarrow Delay-robust stabilization is impossible if $|\rho q|>1$.

Delay-robust state feedback

Delay-robust control law
$V(t)=-\tilde{\rho} u(t, 1)+\int_{0}^{1}\left(K_{\tilde{\rho}}^{v u}(1, \xi) u(t, \xi)+K_{\tilde{\rho}} v v(1, \xi) v(t, \xi)\right) d \xi$

Delay-robust state feedback

Delay-robust control law
$V(t)=-\tilde{\rho} u(t, 1)+\int_{0}^{1}\left(K_{\tilde{\rho}} v u(1, \xi) u(t, \xi)+K_{\tilde{\rho}} v v(1, \xi) v(t, \xi)\right) d \xi$
Three different situations: trade-off performance/robustness

- If $|\rho q| \geq 1 \rightarrow$ delay-robust stabilization is impossible.
- If $1>|\rho q| \geq \frac{1}{2} \rightarrow$ renounce to finite-time stabilization
- If $\frac{1}{2}>|\rho q| \rightarrow$ finite-time stabilization is possible.

Delay-robust state feedback

Delay-robust control law
$V(t)=-\tilde{\rho} u(t, 1)+\int_{0}^{1}\left(K_{\tilde{\rho}} v u(1, \xi) u(t, \xi)+K_{\tilde{\rho}} v v(1, \xi) v(t, \xi)\right) d \xi$
Three different situations: trade-off performance/robustness

- If $|\rho q| \geq 1 \rightarrow$ delay-robust stabilization is impossible.
- If $1>|\rho q| \geq \frac{1}{2} \rightarrow$ renounce to finite-time stabilization
- If $\frac{1}{2}>|\rho q| \rightarrow$ finite-time stabilization is possible.

Different robustness problems

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+-} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-+} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

Measurement: $y(t)=u(t, 1)$.

Different robustness problems

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+-} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-+} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v\left(t-\delta_{0}\right)
\end{aligned}
$$

Measurement: $y(t)=u(t, 1)$.

- Delay acting on the actuation.

Different robustness problems

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+-} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-+} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v\left(t-\delta_{0}\right)
\end{aligned}
$$

Measurement: $y(t)=u\left(t-\delta_{1}, 1\right)$.

- Delay acting on the actuation.
- Delay acting on the measurement.

Different robustness problems

$$
\begin{aligned}
& u_{t}(t, x)+\bar{\lambda} u_{x}(t, x)=\sigma^{+-} v(t, x) \\
& v_{t}(t, x)-\bar{\mu} v_{x}(t, x)=\sigma^{-+} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v\left(t-\delta_{0}\right)
\end{aligned}
$$

Measurement: $y(t)=u\left(t-\delta_{1}, 1\right)$.

- Delay acting on the actuation.
- Delay acting on the measurement.
- Uncertainties on the transport velocities.

Different robustness problems

$$
\begin{aligned}
& u_{t}(t, x)+\bar{\lambda} u_{x}(t, x)=\bar{\sigma}^{+-} v(t, x) \\
& v_{t}(t, x)-\bar{\mu} v_{x}(t, x)=\bar{\sigma}^{-+} u(t, x) \\
& u(t, 0)=\bar{q} v(t, 0) \quad v(t, 1)=\bar{\rho} u(t, 1)+\left(1+\delta_{V}\right) v\left(t-\delta_{0}\right)
\end{aligned}
$$

Measurement: $y(t)=u\left(t-\delta_{1}, 1\right)$.

- Delay acting on the actuation.
- Delay acting on the measurement.
- Uncertainties on the transport velocities.
- Uncertainties on the coupling terms.
- Neglected dynamics...

Different robustness problems

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+-} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-+} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

Measurement: $y(t)=u(t, 1)$.

- Backstepping method to design stabilizing control laws and dual state-observers.
- The robustness can be proved using the time-delay representation.
- Introduction of simple degrees of freedom in the design.
- Trade-offs performance-robustness, disturbance rejection-noise sensistivity.

Backstepping methodology

Main idea Use an integral transform (classically Volterra transform of the second kind):

$$
w(t, x)=u(t, x)-\int_{0}^{x} p(x, y) u(t, y) d y
$$

to map the original system (to stabilize) to a stable target system .
\longrightarrow Constructive design of control laws!

Limitations

- Choice of an adequate target system
- Proof of existence and invertibility of an adequate transform
- Control effort, closed-loop properties

Backstepping methodology

Main idea Use an integral transform (classically Volterra transform of the second kind):

$$
w(t, x)=u(t, x)-\int_{0}^{x} p(x, y) u(t, y) d y
$$

to map the original system (to stabilize) to a stable target system .
\longrightarrow Constructive design of control laws!

Limitations

- Choice of an adequate target system
- Proof of existence and invertibility of an adequate transform
- Control effort, closed-loop properties and implementation

What is a "good" target system?

- Should at least be exponentially stable!
- If too simple: impossible to reach. If too complex: analysis is difficult

What is a "good" target system?

- Should at least be exponentially stable!
- If too simple: impossible to reach. If too complex: analysis is difficult

$$
\begin{aligned}
& u(t, 0)=q v(t, 0) \\
& v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x) & =0 \\
\beta_{t}(t, x)-\mu \beta_{x}(t, x) & =0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha(t, 0)=q \beta(t, 0) \\
& \beta(t, 1)=\rho \alpha(t, 1)+\bar{V}(t)
\end{aligned}
$$

What is a "good" target system?

- Should at least be exponentially stable!
- If too simple: impossible to reach. If too complex: analysis is difficult

$$
u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x)
$$

$$
v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x)
$$

$$
\begin{aligned}
u(t, 0) & =q v(t, 0) \\
v(t, 1) & =\rho u(t, 1)+v(t)
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x) & =0 \\
\beta_{t}(t, x)-\mu \beta_{x}(t, x) & =0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha(t, 0)=q \beta(t, 0) \\
& \beta(t, 1)=\rho \alpha(t, 1)+\bar{V}(t)
\end{aligned}
$$

- Simple target system (no in-domain couplings).
- We may have removed stabilizing terms.

What is a "good" target system?

- Should at least be exponentially stable!
- If too simple: impossible to reach. If too complex: analysis is difficult

What is a "good" target system?

- Should at least be exponentially stable!
- If too simple: impossible to reach. If too complex: analysis is difficult
$u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x)$,
$v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x)$.

$$
\begin{aligned}
& u(t, 0)=q v(t, 0) \\
& v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x) & =\bar{\sigma}^{+}(x) \beta(t, x) \\
\beta_{t}(t, x)-\mu \beta_{x}(t, x) & =\bar{\sigma}^{-}(x) \alpha(t, x)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha(t, 0)=q \beta(t, 0) \\
& \beta(t, 1)=\rho \alpha(t, 1)+\bar{V}(t)
\end{aligned}
$$

- In-domain couplings.
- Smaller control effort?

What is a "good" target system?

- Should at least be exponentially stable!
- If too simple: impossible to reach. If too complex: analysis is difficult

Introduce d.o.f in the design to obtain a class of easily parametrizable target system?

Port-Hamiltonian Framework

- Context: Interaction of physical systems with environment \leftrightarrow power flow through ports.
- Takes advantage of physical properties (passivity, dissipativity) of systems.
- Could be useful to introduce good target systems candidates.

Port-Hamiltonian Framework

- Context: Interaction of physical systems with environment \leftrightarrow power flow through ports.
- Takes advantage of physical properties (passivity, dissipativity) of systems.
- Could be useful to introduce good target systems candidates.

Idea: combining PHS and backstepping

Take advantage of both methodologies to design boundary feedback laws:

- Use the Port-Hamiltonian framework to determine target systems with physical meaning
- Use the backstepping methodology to map the original system to the target system

Control objective

Design the control law $V(t)$ s.t closed-loop system is equivalent to a target system with specified properties.

PHS formulation of clamped string

System equations:

$$
\left\{\begin{array}{l}
\rho(x) \frac{\partial^{2} w}{\partial t^{2}}(t, x)=\frac{\partial}{\partial x}\left(E(x) \frac{\partial w}{\partial x}(t, x)\right)-\kappa(x) \frac{\partial w}{\partial t}(t, x), \\
\left.\frac{\partial w}{\partial t}\right|_{x=0}(t)=0,\left.\quad E(1) \frac{\partial w}{\partial x}\right|_{x=1}(t)=U(t)
\end{array}\right.
$$

Energy state variables:

$$
\begin{cases}X_{1}(x, t)=\frac{\partial w}{\partial x}(x, t) & : \text { strain } \\ X_{2}(x, t)=\rho(x) \frac{\partial w}{\partial t}(x, t) & : \text { momentum density }\end{cases}
$$

Port-Hamiltonian System

$$
\frac{\partial}{\partial t}\binom{X_{1}}{X_{2}}=\left(\begin{array}{cc}
0 & \frac{\partial}{\partial x}\left(\frac{1}{\rho(x)} \cdot\right) \\
\frac{\partial}{\partial x}(E(x) \cdot) & -c(x)
\end{array}\right)\binom{X_{1}}{X_{2}} \Leftrightarrow \frac{\partial X}{\partial t}=P_{1} \frac{\partial}{\partial x}(\mathcal{H}(x) X)+G_{0}(\mathcal{H}(x) X)
$$

with Hamiltonian density $\mathcal{H}(x)=\left(\begin{array}{cc}E(x) & 0 \\ 0 & \frac{1}{\rho(x)}\end{array}\right), c(x)=\frac{\kappa(x)}{\rho(x)}, P_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), G_{0}=\left(\begin{array}{cc}0 & 0 \\ 0 & -c(x) \rho(x)\end{array}\right)$.
System energy: $\mathcal{E}(t)=\frac{1}{2} \int_{0}^{1}\left(E(x) X_{1}(t, x)^{2}+\rho^{-1}(x) X_{2}(t, x)^{2}\right) \mathrm{d} x$.
Exchange through the actuated boundary in $\mathrm{OL}: \frac{d \mathcal{E}}{d t}(t)=-\int_{0}^{1}\left(\kappa(x)\left(\frac{X_{2}(t, x)}{\rho(x)}\right)^{2}\right) \mathrm{d} x$.

Control objective

Change of internal power through actuation at the boundary $x=1$:

- $\kappa>0$: OL system stable \mapsto fasten stabilization;
- else \mapsto stabilize the string dynamics
\} impose a specific decay rate to \mathcal{E}, using distributed damping assignment

Control Objective

Design control law $U(t)$ s.t dynamics of X equivalent to the dynamics of $\bar{X}=\left(\bar{X}_{1}, \bar{X}_{2}\right)$ satisfying

$$
\frac{\partial}{\partial t}\binom{\bar{X}_{1}}{\bar{X}_{2}}=\left(\begin{array}{cc}
0 & \frac{\partial}{\partial x}\left(\frac{1}{\rho(x)} \cdot\right) \\
\frac{\partial}{\partial x}(E(x) \cdot) & -K
\end{array}\right)\binom{\bar{X}_{1}}{\bar{X}_{2}}
$$

Class of target systems parametrized by K
In CL, energy decreases $\propto K$:

$$
\frac{d \overline{\mathcal{E}}}{d t}=-K \int_{0}^{1}\left(\frac{\bar{X}_{2}(x, t)}{\rho(x)}\right)^{2} d x
$$

Control strategy

Overall objective: Determine an invertible transform \mathcal{T} mapping initial PHS to target system.

Control strategy

Overall objective: Determine an invertible transform \mathcal{T} mapping initial PHS to target system.

$$
\text { Indefinite damping } c(x)
$$ $\left(X_{1}, X_{2}\right)$

Specific damping K

$\left(\overline{X_{1}}, \overline{X_{2}}\right)$

- Expression in the Riemann coordinates + Backstepping transformation

$$
\begin{aligned}
u_{t}(t, x)+\lambda u_{x}(t, x) & =\sigma^{+} v(t, x) \\
v_{t}(t, x)-\mu v_{x}(t, x) & =\sigma^{-} u(t, x)
\end{aligned}
$$

$$
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=\bar{\sigma}^{+}(x) \beta(t, x)
$$

$$
\beta_{t}(t, x)-\mu \beta_{x}(t, x)=\bar{\sigma}^{-}(x) \alpha(t, x)
$$

$u(t, 0)=q v(t, 0)$
$v(t, 1)=\rho u(t, 1)+v(t)$

$$
\begin{aligned}
& \alpha(t, 0)=q \beta(t, 0) \\
& \beta(t, 1)=\bar{\rho} \alpha(t, 1)
\end{aligned}
$$

Backstepping transformations

Main idea

Use an invertible Volterra integral transform to replace in-domain coupling terms $\sigma^{ \pm}(x)$ by adequate terms $\bar{\sigma}^{ \pm}(x)$).

Volterra transform of the second kind

$$
\binom{\alpha(t, x)}{\beta(t, x)}=\binom{u(t, x)}{v(t, x)}-\int_{0}^{x} \mathcal{K}(x, y)\binom{u(t, y)}{v(t, y)}(y) d y
$$

Kernel $\mathcal{K}=\left(\begin{array}{c}K^{++} \\ K^{-+}\end{array} K^{+-} .+\right.$uniquely defined (kernel equations).

Control input

Control input $V(t)$ directly follows from the backstepping methodology

$$
\begin{aligned}
V(t)=(\bar{\rho}-\rho) u(t, 1)+\int_{0}^{1} & \left(K^{-+}(1, y)-\bar{\rho} K^{++}(1, y)\right) u(t, y) \\
& +\left(K^{--}(1, y)-\bar{\rho} K^{+-}(1, y)\right) v(t, y) \mathrm{d} y
\end{aligned}
$$

We obtain $U(t)$ for the initial system.

Simulation results

$$
\left\{\begin{array}{l}
\rho(x) \frac{\partial^{2} w}{\partial t^{2}}(t, x)=\frac{\partial}{\partial x}\left(E(x) \frac{\partial w}{\partial x}(t, x)\right) \\
\left.\frac{\partial w}{\partial t}\right|_{x=0}(t)=0,\left.\quad E(1) \frac{\partial w}{\partial x}\right|_{x=1}(t)=U(t)
\end{array}\right.
$$

Constant cœfficients $\rho=936 \mathrm{~kg} . \mathrm{m}^{-3}, E=4.14 \mathrm{GPa}$.

Displacement in open-Loop

Development of easily parametrizable target systems

- PHS framework introduction of degrees of freedom in the design

Development of easily parametrizable target systems

- PHS framework introduction of degrees of freedom in the design
- Next steps:
- Design of analytical tools to quantify the performance of the closed-loop system w.r.t a given set of specifications.
- Tuning methods to use the available degrees of freedom best w.r.t this set of performance specifications.
- Toolbox analogous to what exists for finite-dimensional systems.

Development of easily parametrizable target systems

- PHS framework introduction of degrees of freedom in the design
- Next steps:
- Design of analytical tools to quantify the performance of the closed-loop system w.r.t a given set of specifications.
- Tuning methods to use the available degrees of freedom best w.r.t this set of performance specifications.
- Toolbox analogous to what exists for finite-dimensional systems.
- Advantages compared to simple PID controllers?

Late-lumping approximation

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

Backstepping controller: $\quad V(t)=\int_{0}^{1} K(y) u(t, y)+L(1, y) v(t, y) \mathrm{d} y$.

- Computational effort related to the numerical implementation.

Late-lumping approximation

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

Backstepping controller: $\quad V(t)=\int_{0}^{1} K(y) u(t, y)+L(1, y) v(t, y) \mathrm{d} y$.

- Computational effort related to the numerical implementation.
- Finite-dimensional approximation of the output-feedback controller: model-reduction.

Late-lumping approximation

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v(t)
\end{aligned}
$$

Backstepping controller: $\quad V(t)=\int_{0}^{1} K(y) u(t, y)+L(1, y) v(t, y) \mathrm{d} y$.

- Computational effort related to the numerical implementation.
- Finite-dimensional approximation of the output-feedback controller: model-reduction.
- Late-lumping controllers: guarantees of convergence? Advantages compared to early-lumping strategies?

Approximation of the control input

- V_{n} : Approximation of the control input $V(t)$
- Is the PDE system with approximated control input still stable?

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v_{n}(t)
\end{aligned}
$$

Approximation of the control input

- V_{n} : Approximation of the control input $V(t)$
- Is the PDE system with approximated control input still stable?

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v_{n}(t)
\end{aligned}
$$

- Same backstepping transformation

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0 \\
& \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \\
& \alpha(t, 0)=q \beta(t, 0) \quad \beta(t, 1)=\rho \alpha(t, 1)+V_{n}(t)-V(t)
\end{aligned}
$$

Approximation of the control input

- V_{n} : Approximation of the control input $V(t)$
- Is the PDE system with approximated control input still stable?

$$
\begin{aligned}
& u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x) \\
& v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x) \\
& u(t, 0)=q v(t, 0) \quad v(t, 1)=\rho u(t, 1)+v_{n}(t)
\end{aligned}
$$

- Same backstepping transformation

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0 \\
& \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \\
& \alpha(t, 0)=q \beta(t, 0) \quad \beta(t, 1)=\rho \alpha(t, 1)+V_{n}(t)-V(t)
\end{aligned}
$$

- Stability analysis using a Lyapunov function.

Lyapunov analysis

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0 \\
& \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \\
& \alpha(t, 0)=q \beta(t, 0) \quad \beta(t, 1)=\rho \alpha(t, 1)+V_{n}(t)-V(t)
\end{aligned}
$$

$\underline{\text { Lyapunov function: }} W(t)=\int_{0}^{1} \frac{\mathrm{e}^{-v x}}{\lambda} \alpha^{2}(t, x)+\frac{q^{2} \mathrm{e}^{v x}}{\mu} \beta^{2}(t, x) d x$: equivalent to L^{2}-norm $(v>0)$.

Lyapunov analysis

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0 \\
& \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \\
& \alpha(t, 0)=q \beta(t, 0) \quad \beta(t, 1)=\rho \alpha(t, 1)+V_{n}(t)-V(t)
\end{aligned}
$$

Lyapunov function: $W(t)=\int_{0}^{1} \frac{\mathrm{e}^{-v x}}{\lambda} \alpha^{2}(t, x)+\frac{q^{2} \mathrm{e}^{v x}}{\mu} \beta^{2}(t, x) d x$: equivalent to L^{2}-norm $(v>0)$.

- Differentiation w.r.t time

$$
\dot{W}(t) \leq-v_{1} W(t)+C\left(V_{n}(t)-V(t)\right)^{2}
$$

Lyapunov analysis

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0 \\
& \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \\
& \alpha(t, 0)=q \beta(t, 0) \quad \beta(t, 1)=\rho \alpha(t, 1)+V_{n}(t)-V(t)
\end{aligned}
$$

Lyapunov function: $W(t)=\int_{0}^{1} \frac{\mathrm{e}^{-v x}}{\lambda} \alpha^{2}(t, x)+\frac{q^{2} \mathrm{e}^{v x}}{\mu} \beta^{2}(t, x) d x$: equivalent to L^{2}-norm $(v>0)$.

- Differentiation w.r.t time

$$
\dot{W}(t) \leq-v_{1} W(t)+C\left(V_{n}(t)-V(t)\right)^{2}
$$

- Stability if uniform convergence of the approximation scheme

$$
\begin{aligned}
& \left|V_{n}(t)-V(t)\right| \leq C_{n}\|(u, v)\|_{L^{2}}, \quad \text { where } C_{n} \rightarrow 0 \\
\Rightarrow \quad & \dot{W}(t) \leq-\eta W(t), \quad \text { for } n \text { large enough. }
\end{aligned}
$$

Lyapunov analysis

$$
\begin{aligned}
& \alpha_{t}(t, x)+\lambda \alpha_{x}(t, x)=0 \\
& \beta_{t}(t, x)-\mu \beta_{x}(t, x)=0 \\
& \alpha(t, 0)=q \beta(t, 0) \quad \beta(t, 1)=\rho \alpha(t, 1)+V_{n}(t)-V(t)
\end{aligned}
$$

Lyapunov function: $W(t)=\int_{0}^{1} \frac{\mathrm{e}^{-v x}}{\lambda} \alpha^{2}(t, x)+\frac{q^{2} \mathrm{e}^{v x}}{\mu} \beta^{2}(t, x) d x$: equivalent to L^{2}-norm $(v>0)$.

- Differentiation w.r.t time

$$
\dot{W}(t) \leq-v_{1} W(t)+C\left(V_{n}(t)-V(t)\right)^{2}
$$

- Stability if uniform convergence of the approximation scheme

$$
\begin{aligned}
& \left|V_{n}(t)-V(t)\right| \leq C_{n}\|(u, v)\|_{L^{2}}, \quad \text { where } C_{n} \rightarrow 0 \\
\Rightarrow \quad & \dot{W}(t) \leq-\eta W(t), \quad \text { for } n \text { large enough. }
\end{aligned}
$$

- Approximations schemes: Galerkin approximation, machine-learning (DeepONet) \rightarrow recent publications, comparisons on test-case studies, no general results.

Conclusions and Perspectives

- Backstepping controllers fo hyperbolic system
- Volterra change of coordinates \rightarrow target system with a simpler structure.
- Robustness analysis using a time-delay representation.
- Extensions to networks of hyperbolic systems.

Conclusions and Perspectives

- Backstepping controllers fo hyperbolic system
- Volterra change of coordinates \rightarrow target system with a simpler structure.
- Robustness analysis using a time-delay representation.
- Extensions to networks of hyperbolic systems.
- Development of easily parametrizable target systems
- PHS framework to introduce physical degrees of freedom.
- Developments of analytical tools to quantify closed-loop performance.
- Tuning methods to use the available dof best w.r.t a set of performance specifications.

Conclusions and Perspectives

- Backstepping controllers fo hyperbolic system
- Volterra change of coordinates \rightarrow target system with a simpler structure.
- Robustness analysis using a time-delay representation.
- Extensions to networks of hyperbolic systems.
- Development of easily parametrizable target systems
- PHS framework to introduce physical degrees of freedom.
- Developments of analytical tools to quantify closed-loop performance.
- Tuning methods to use the available dof best w.r.t a set of performance specifications.
- Approximation of the control law to reduce the numerical burden
- Model reduction strategies: Galerkin approximation, Machine-learning emulations.
- Stability guarantees using Lyapunov analysis.
- Necessary to obtain Lyapunov function for general hyperbolic system or TDS representation.

$$
z(t)=\sum_{k=1}^{N} A_{k} z\left(t-\tau_{k}\right)+\int_{0}^{\tau} f(v) z(t-v) d v
$$

Conclusions and Perspectives

- Backstepping controllers fo hyperbolic system
- Volterra change of coordinates \rightarrow target system with a simpler structure.
- Robustness analysis using a time-delay representation.
- Extensions to networks of hyperbolic systems.
- Development of easily parametrizable target systems
- PHS framework to introduce physical degrees of freedom.
- Developments of analytical tools to quantify closed-loop performance.
- Tuning methods to use the available dof best w.r.t a set of performance specifications.
- Approximation of the control law to reduce the numerical burden
- Model reduction strategies: Galerkin approximation, Machine-learning emulations.
- Stability guarantees using Lyapunov analysis.
- Necessary to obtain Lyapunov function for general hyperbolic system or TDS representation.

$$
z(t)=\sum_{k=1}^{N} A_{k} z\left(t-\tau_{k}\right)+\int_{0}^{\tau} f(v) z(t-v) d v
$$

- Benchmark and experimental validation.

