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Introduction: Hyperbolic systems

@ Phenomena with finite propagation speeds: waves, balance laws, conservation laws.
A w(t, x) — 2ow(t,x) = 0.

@ Examples: mass, charge, energy, momentum
@ Complex engineering problems: stabilization, observer design, parameter estimation.

Stringent operating, environmental and economical requirement
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@ Phenomena with finite propagation speeds: waves, balance laws, conservation laws.
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Stringent operating, environmental and economical requirement
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Control and estimation of mechanical vibrations Control of a micro-endoscope
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Introduction: Hyperbolic systems

@ Phenomena with finite propagation speeds: waves, balance laws, conservation laws.
dpw(t, x) — c2ow(t,x) = 0.

@ Examples: mass, charge, energy, momentum

@ Complex engineering problems: stabilization, observer design, parameter estimation.

Stringent operating, environmental and economical requirement
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Traffic congestion control (avoid stop-and-go oscillations)
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Introduction: general objective

Objective
Develop a systematic framework for the practical control of hyperbolic systems J

@ Design of explicit control laws: constructive methods.
@ Easily implementable strategies: low computational burden.
@ Possible real implementation: performance specifications.
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Introduction: general objective

Objective
Develop a systematic framework for the practical control of hyperbolic systems J

@ Design of explicit control laws: constructive methods.
@ Easily implementable strategies: low computational burden.
@ Possible real implementation: performance specifications.

Multiple theoretical approaches

@ Optimization controllers [Russel, Lions]

@ Lyapunov-based controllers [Bastin, Coron, Prieur]

@ Flatness-based methods [Meurer]

@ Backstepping controllers [Krstic]
Breakthroughs but several practical limitations.
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Toy problem: clamped string

Toy system: clamped string with indefinite in-domain b

damping and space-varying coefficients

— towards generalization to more complex systems } e
0 1

2
005 (1) = 5 (B0 G260 - k(0% (10

p(x) mass density, £(x) Young’s modulus € C'([0,1])T, x(x) € C°([0, 1]) in-domain damping.

Boundary conditions:

@ No movement in x = 0: %—"HX:o(t) =0

@ Torque control inputin x = 1: E(1 )%—;"|X:1 (H=u(t)

Initial conditions: w(0, x) = wo(x) € C'([0, 1]).

Riemann coordinates: u(t,x) = w;(t,x) — 4/ g((;()) wy(t,x), v(t,x) = w(t,x) + 4/ 5((:)) wx(t,x)
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System under consideration

System of scalar balance laws: simple test case to present generic concepts
ur(t, %) F M)y (,X) = 67 ()u(t.x) + 6T ()v(t,x),
vi(t,x) —u(x)vx(t,x) =c  (x)v(t,x)+0~ (x)u(t,x),
u(t,0) = qv(t,0) v(t,1) = pu(t,1)+ V(1).

G G*E G+E >P
¥ L <« V(1)

@ Diagonal terms can be removed with exp. change of coordinates.

@ Couplings — instability.
@ Distributed states and boundary control.
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Outline of the presentation

e An introduction to the backstepping approach

e Design of robust control laws for hyperbolic systems

e Development of easily parametrizable target systems.

0 Integration, approximation, and model reduction.
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Backstepping for PDEs

@ Extension of finite-dimensional backstepping [Krstic et al.; 1995]

Introduced for parabolic PDEs [Balogh, Krstic; 2002]

Second-order hyperbolic PDEs [Krstic et al.; 2006]

@ First-order hyperbolic PDEs [Krstic, Smyshlyaev; 2008]

Systems of First-order hyperbolic PDEs [Vazquez; 2012], [Di Meglio et al.; 2013]
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Backstepping methodology
Main idea Use an integral transform (classically Volterra transform of the second kind):

—u(tx) - [ plxyulty)ay

to map the original system (to stabilize) to a stable
— Constructive design of control laws!

u(0,x)

Limitations
@ Choice of an adequate target system
@ Proof of existence and invertibility of an adequate transform

@ Control effort, closed-loop properties and implementation
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Example of two scalar equations: backstepping transformation

ur(t, x) + hux(t, x) = o v(t, x),
ve(t,x) —pv(t,x) = o u(t, x),
u(t,0) = qv(t,0) v(t,1)=pu(t1)+ V().

u(t, x)

G G*E G+E >P
t ' «— V(1)

v(t,x)
0 1 x
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Example of two scalar equations: backstepping transformation

ur(t, x) + hux(t, x) = o v(t, x),
vi(t, x) —uvx(t,x) = 6 u(t,x),
u(t,0) = qv(t,0) v(t,1)=pu(t1)+ V().

@ Map the original system to a target system for which the stability analysis is easier.
@ Variable change: integral transformation.

Example: o(t,x) = u(t,x) — /OX K" (x,&)u(t,&) + K" (x,&)v(t,E)dE

Bt x) = v(t,x) - /OX K™ (x,8)u(t,8) + K (x,8)v(t,§)dg

1

\ P
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Example of two scalar equations: backstepping transformation

ur(t,x) 4+ Aux(t, x) = ot v(t, x),
ve(t,x) — pvx(t,x) = o u(t, x),
u(t,0) = qv(t,0) v(t,1) =pu(t,1)+ V(t).

@ Map the original system to a target system for which the stability analysis is easier.
@ Variable change: integral transformation.

Example: ol(t,x) = u(t,x) — /o " KU, E)u(t,E) + K (x,E)v(1, E)dE
B = (1)~ [ K 8)U() + K (x (. E)0t

Difficulties:
@ Find the target system.
@ Existence of the kernel K (set of PDEs to be satisfied).
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Objective: Move the in-domain coupling terms at the actuated boundary.

ur(t, x) + hux(t, x) = T v(t, x),
vi(t,x) — uvx(t,x) = 6~ u(t, x).

u(t, x)
G o~ E ot E >P
*v(t7x)l <« V(1)
; i

u(t,0) = qv(t,0)
v(t,1) =pu(t, 1)+ V(1)
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Objective: Move the in-domain coupling terms at the actuated boundary.

o (t,x) + Ao (t,x) =0,

ur(t,x) 4+ Aux(t,x) = ot v(t, x), -
vi(t, x) — uvx(t,x) = 6~ u(t, x). Bi(tx) —4Bx(t.x) = 0.
u(t, x) oft, x)
SR )
*v(t,x)l <« V(1) 50 <« V(1)
0 1 x 9 1I X

u(t,0) = qv(t,0)
v(t,1) =pu(t, 1)+ V(1)
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v(t,1) =pu(t, 1)+ V(1)
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Objective: Move the in-domain coupling terms at the actuated boundary.

o (t,x) + Ao (t,x) =0,

ur(t,x) 4+ Aux(t,x) = ot v(t, x), -
vi(t, x) — uvx(t,x) = 6~ u(t, x). Bi(tx) —4Bx(t.x) = 0.
u(t, x) oft, x)
SR )
*V(LX)' <« V(1) 50 <« V(1)
0 1 x (.] 1 x

Ot(t, 0) = QB(t7 0)

u(t,0) = qv(t,0)
B(tv 1) = pOC(t., 1 ) + V(t)

v(t,1) =pu(t, 1)+ V(1)

Natural control law

V(t) = —poyt,1)
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Backstepping transformation

B(t,x) = v(t,x) - /OX K" (x,8)u(t,8) + K™ (x,E)v(1,8) k.
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Backstepping transformation

B(t,x) = v(t,x) - /OX K" (x,8)u(t,8) + K™ (x,E)v(1,8) k.

We have: vi—uvx=0"u We want: B;—uPx =0
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Backstepping transformation

B(t,x) = v(t,x) - /OX K" (x,8)u(t,8) + K™ (x,E)v(1,8) k.

We have: vi—uvx=0"u We want: B;—uPx =0

Differentiation w.r.t space
—uBx(t,x) = —uvy(t,x) +uK" (x, x)u(t, x) + K" (x,x)v(t, x)
+ [k E)u(1.8) 4 (x B (1 E)
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Backstepping transformation

B(t,x) = v(t,x) - /OX K" (x,8)u(t,8) + K™ (x,E)v(1,8) k.

We have: vi—uvx=0"u We want: B;—uPx =0

Differentiation w.r.t space
B (1.3) = —avs (60 + K, XUt )+ K (0, 5)(20)
+ [k E)u(1.8) 4 (x B (1 E)
Differentiation w.r.t time
Br(t. ) = wa(t:x) — [ KO0 (1.8) + K (. B (.
- [ KB B+ K (B0 u(tE)
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Backstepping transformation

B(t,x) = v(t,x) - /OX K" (x,8)u(t,8) + K™ (x,E)v(1,8) k.

We have: vi—uvx=0"u We want: B;—ufx =0

Differentiation w.r.t space
B (1.3) = —avs (6 + K, XUt )+ K (0, 5) (1)
+ [ E)u(1.8) 4 (x B (1 E)
Differentiation w.r.t time
Bt ) = (1) = [ K1) + K (x s (x.2)
- [ KB B+ K (x B0 u(tE)

Integration by parts + use of B.Cs.

11/31



Backstepping transformation

B(t,x) = v(t,x) - /OX K*(x,8)u(t,8) + K™ (x,8)v(t,§)dt.

We have: v;i—uvy=06"u We want: By —ufx =0

Differentiation w.r.t space
— B (t, %) = —pavi(£,%) + K" (x, x)u(t, x) + K" (x, x)v(t, x)

n /0 " UK, E)u(t,E) + K (x, E)v(t,E)

Be(t,x) = pvy(t,x) + 0~ u(t, x) +AK" (x, x)u(t,x) — uK"" (x,x)v(t, x)
—AK"(x,0)u(t,0) — uK"(x,0)v(t,0) — /OX Kg“(x,i)lu(t,ﬁ)dﬁ

- [ R BB+ K (x B)oT V(E) + K (x B0 u(tE)dE
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Backstepping transformation

B(t,x) = v(t,x) - /OX K*(x,8)u(t,8) + K™ (x,8)v(t,§)dt.

We have: v;i—uvy=06"u We want: By —ufx =0

Differentiation w.r to space
—1iBx(t,x) = —pvy(t,x) + uK "™ (x, x)u(t, x) +uK" (x, x)v(t, x)

+f " K (x E)u(t,E) + K (x E)(1,E)

Be(t,x) = pvx(t,x) + 0~ u(t, x) +AK" (x,x)u(t,x) — uK"" (x,x)v(t, x)
K" (x,0)u(t,0) — K™ (x,0)v(t,0) — /0 TR, Ehu(, )

- [ R E(£8) + K, V(E) + K™ (1 E)o u(t.E)oE
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Kernel equations

0= Be(t, ) —uBx(t,x)
= (67T F AKX, x) +uK" (x,x))u(t, x) + (MK (x,0)q — uK""(x,0)) v(t,0)

= [ OR 08~ ki (8) 4 K (B0 Jult E)

[ () K (x.8) + K E)0 (L E)
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Kernel equations

0= Be(t, ) —uBx(t,x)
= (67T F AKX, x) +uK" (x,x))u(t, x) + (MK (x,0)q — uK""(x,0)) v(t,0)

= [ OR 08~ ki (8) 4 K (B0 Jult E)
[ () K (x.8) + K E)0 (L E)

AR (x,8) — i (x,8) = =K (x,§)0™,

Y (x,8) + K (x,E) = —K"(x, )0
AK™M(x,0)qg = uK*"(x,0), K"(x,x)

_ o
— Au
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Kernel equations

0 = Be(t,x) —uBx(t, x)
= (o~ + MK (x,x) 4+ uK" (x,x))u(t,x) + (ALK (x,0)q — uK"" (x,0))v(t,0)

= [ OR 08~ ki (8) 4 K (B0 Jult E)

[ () K (x.8) + K E)0 (L E)

I (3,8) + K (3.E) = —K™(x. )0
ME(x,8) —HKH(x.8) = —K™(x.B)o™,

AKY(x,0)q = uK" (x,0),  K™(x,x) = &

@ Integral equations + successive approximations — Well-posedness.
@ Invertibility of the Volterra transformation.
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Finite-time stabilization?

o (t,x)+hoy(t,x) =0, PBr(t,x)—uPx(t,x) =0,
(X(t,O) = qB(t,O),

B(t,1) =paft,1) + V(1).
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Finite-time stabilization?

o (t,x) +hoy(t,x) =0, PBe(t,x)—uPx(t,x) =0,
(X(t,O) = CIB(t,O),

Bt 1) =po(t. 1)~ | (N(E)(t.E) + NP(E)B(1.E) ) o+ V(o)

Jo \

1

V() =—pa(t, 1)+ [ (N*@u(t.0) + NRB(18))

1—x

Bl x) = Blt——

The system is finite-time stable!

A)=0, o(tx)=0(t—7.0) = gB(t—5.0) =0,
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Finite-time stabilization?

o (t,x) +hoy(t,x) =0, PBe(t,x)—uPx(t,x) =0,
(X(t,O) = qB(t70)7

B(t.1) =pou(t. 1)~ | " (NE)ot.2) + NP(E)B(L.E)) o+ V(1)
V() =—pa(t, 1)+ [ (N*@u(t.0) + NRB(18))

What if we add a delay?
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Finite-time stabilization?

o (t,x)+hoy(t,x) =0, PBr(t,x)—uPx(t,x) =0,
(X(t,O) = qB(t,O),

B ) =pa(t,1) [ (N(@u(t2) + WRB(E)) deot V).

V() =-pa(t, )+ [ (N*@u(t.8) + NERB(8))

o 5 10 15 20 25 30
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Finite-time stabilization?

o (t,x)+hoy(t,x) =0, PBr(t,x)—uPx(t,x) =0,
(X(t,O) = qB(t,O),

B(t.1) = pot.1) | | (NE)o(t2) + NEB(1E) ) oo+ V(1)

V() =-pa(t, )+ [ (N*@u(t.8) + NERB(8))

o 5 10 15 20 25 30

Finite time convergence: performance > robustness.
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Robustness analysis

ot (t, x) + Ao (t,x) =0
Be(t,x) —uPx(t,x) =0

(X(t,O) = qB(t,O)

B 1) = pot )~ [ (Na(t.&) + NPRIB(.E)) o6+ V(D)
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Robustness analysis

o (t,x) + Ao (t, x) = 0 — Transport equation
Bi(t,x) — uPx(t,x) = 0 — Transport equation

O(.(i,O) = qB(t7O)
1
B(t.1) = pa(t 1)~ [ (N(©)a(.) + N(E)B(1E)) de+ V(D)
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Robustness analysis

o (t,x) + Ao (t, x) = 0 — Transport equation
Bi(t,x) — uPx(t,x) = 0 — Transport equation

a(t,0) = gB(t,0)

B 1) =pa(t, 1)~ [ (N*@a(t.8) + NEB(E) de-+ V(D)

Difference equation satisfied by [(t,1)

For all t > 1X—l-'}l:’l:,wehave

B, 1) = paB(t— 1)~ | NEIB(t— & 1)a + V(1)
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Delay-robust stabilization

B(t.1) = paB(t—%.1)— [ N(EIB(t—E 1o+ V(D)

Delay 8 acting on V(t) = —pgB(t—1,1) + J3 N(E)B(t—&,1)dE.
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Delay-robust stabilization

B(t.1) = paB(t—%.1)— [ N(EIB(t—E 1o+ V(D)

Delay 8 acting on V(t) = —pgB(t—1,1) + J3 N(E)B(t—&,1)dE.

Closed-loop system:

B, 1) = paB(t —=.1) ~ paB(t—8.1) — [ N(E)(B(t~&1) ~ B(t~3-£, 1))t
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Delay-robust stabilization

B(t.1) = paB(t—%.1)— [ N(EIB(t—E 1o+ V(D)

Delay 8 acting on V(t) = —pgB(t—1,1) + J3 N(E)B(t—&,1)dE.

Closed-loop system:

B, 1) = paB(t —=.1) ~ paB(t—8.1) — [ N(E)(B(t~&1) ~ B(t~3-£, 1))t

: 1
= Problem if |pg| > 3
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Delay-robust stabilization

B(t.1) = paB(t—%.1)— [ N(EIB(t—E 1o+ V(D)

Delay 8 acting on V(t) = —pgB(t—1,1) + J3 N(E)B(t—&,1)dE.

Closed-loop system:

B, 1) = paB(t —=.1) ~ paB(t—8.1) — [ N(E)(B(t~&1) ~ B(t~3-£, 1))t

: 1
= Problem if |pg| > 3

Solution: renounce to finite-time stabilization

V() = ~Baplt—5,1)+ [ @B ~& 1)

Delay-robustness under the NSC |p| < ! ‘L“)q‘.

15/31



Open-loop analysis: V(t) =0

Bt1) = paB(t—=.1) — [ N(&)B(t—E 1)ak
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Open-loop analysis: V(t) =0

Bt1) = paB(t—=.1) — [ N(&)B(t—E 1)ak

Open loop analysis

If the open loop transfer function has an infinite number of poles in the RHP, the system cannot
be delay-robustly stabilized.
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Open-loop analysis: V(t) =0

Bt1) = paB(t—=.1) — [ N(&)B(t—E 1)ak

Open loop analysis

If the open loop transfer function has an infinite number of poles in the RHP, the system cannot
be delay-robustly stabilized.

Open-loop characteristic equation:

D(s) = 1— pge ™+ /o “N(E)eEdt =0
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Open-loop analysis: V(t) =0

Bt1) = paB(t—=.1) — [ N(&)B(t—E 1)ak

Open loop analysis

If the open loop transfer function has an infinite number of poles in the RHP, the system cannot
be delay-robustly stabilized.

Open-loop characteristic equation:

D(s) = 1— pge ™+ /o “N(E)eEdt =0

F(s) H(Vs)

If |pg| > 1: F has an infinite number of zeros in the RHP and H is proper. Thus D has an
infinite number of zeros in the RHP
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Open-loop analysis: V(t) =0

Bt1) = paB(t—=.1) — [ N(&)B(t—E 1)ak

Open loop analysis

If the open loop transfer function has an infinite number of poles in the RHP, the system cannot
be delay-robustly stabilized.

Open-loop characteristic equation:

T
D(s) = 1 —pge ™+ / N(E)e 65dE = 0
| S S— 0
o)
H(s)

If |pg| > 1: F has an infinite number of zeros in the RHP and H is proper. Thus D has an
infinite number of zeros in the RHP
= Delay-robust stabilization is impossible if [pg| > 1.
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Delay-robust state feedback

Delay-robust control law
V(1) = —pu(t, 1) + fy (K™ (1,8)u(t,8) + K5 (1,E)v(1,E)) o€ J
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Delay-robust state feedback

Delay-robust control law

V(1) = —pu(t,1) + fy (K5*(1.8)u(t,8) + Ks* (1,E)v(t.8)) d&

Three different situations: trade-off performance/robustness
@ If |pg| > 1 — delay-robust stabilization is impossible.
e If1>|pg| > § — renounce to finite-time stabilization

o If % > |pg| — finite-time stabilization is possible.
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Delay-robust state feedback

Delay-robust control law

V(1) = —pu(t,1) + fy (K5*(1.8)u(t,8) + Ks* (1,E)v(t.8)) d&

Three different situations: trade-off performance/robustness
@ If |pg| > 1 — delay-robust stabilization is impossible.
e If1>|pg| > § — renounce to finite-time stabilization

o If % > |pg| — finite-time stabilization is possible.

e Conttrol, p=0
— =Control, p=0.3
Control, p=0.6

Output
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Different robustness problems

ur(t,x) 4+ Aux(t,x) = T v(t, x)
vi(t,x) — vy (t,x) = 6~ Tu(t, x)
u(t,0) = qv(t,0) v(t,1)=pu(t,1)+ V(1)

Measurement: y(t) = u(t,1).

18/31



Different robustness problems

ur(t,x) 4+ A (t,x) = ot v(t, x)
Vt(tvx) 7:UVX(t7X) = 67+U(t7X)
u(t,0) =qv(t,0) v(t,1)=pu(t,1)+ V(t—3)
Measurement: y(t) = u(t,1).
@ Delay acting on the actuation.
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Different robustness problems

ur(t,x) 4+ A (t,x) = ot v(t, x)
Vt(tvx) 7:UVX(t7X) = 67+U(t7X)
U(tvo) = qV(f,O) V(tv 1) = pU(t, 1 ) + V(tf 60)
Measurement: y(t) = u(t—1,1).
@ Delay acting on the actuation.

@ Delay acting on the measurement.
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Different robustness problems

ur(t, x) 4+ A (t, x) = 6T v(t, x)
vi(t,x) — five(t,x) = 6~ Tu(t, x)
u(t,0) = qv(t,0) v(t,1) =pu(t,1)+ V(t—3d)

Measurement: y(t) = u(t—1,1).
@ Delay acting on the actuation.
@ Delay acting on the measurement.

@ Uncertainties on the transport velocities.
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Different robustness problems

u(t, x) + A (t,x) =6 v(t,x)
ve(t,x) — v (t,x) = 5 Tu(t, x)
u(t,0) = gv(t,0) v(t,1)=pu(t,1)+(1+3dv)V(t—35)

Measurement: y(t) = u(t—1,1).

@ Delay acting on the actuation.

@ Delay acting on the measurement.

@ Uncertainties on the transport velocities.
@ Uncertainties on the coupling terms.
°

Neglected dynamics...
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Different robustness problems

ur(t,x) 4+ Aux(t,x) = T v(t, x)
vi(t,x) — v (t,x) = 6~ Tu(t, x)
u(t,0) = qv(t,0) v(t,1)=pu(t,1)+ V(1)

Measurement: y(t) = u(t,1).

@ Backstepping method to design stabilizing control laws and dual state-observers.
@ The robustness can be proved using the time-delay representation.

@ Introduction of simple degrees of freedom in the design.

@ Trade-offs performance-robustness, disturbance rejection-noise sensistivity.
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Backstepping methodology
Main idea Use an integral transform (classically Volterra transform of the second kind):

—u(tx) - [ plxyulty)ay

to map the original system (to stabilize) to a stable
— Constructive design of control laws!

u(0,x)

Limitations
@ Choice of an adequate target system
@ Proof of existence and invertibility of an adequate transform
@ Control effort, closed-loop properties
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Backstepping methodology
Main idea Use an integral transform (classically Volterra transform of the second kind):

~u(t)- [ “plxy)u(t, y)dy

to map the original system (to stabilize) to a stable
— Constructive design of control laws!

u(0,x)

Limitations
@ Choice of an adequate target system
@ Proof of existence and invertibility of an adequate transform

@ Control effort, closed-loop properties and implementation
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What is a "good" target system?

@ Should at least be exponentially stable!
@ If too simple: impossible to reach. If too complex: analysis is difficult
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What is a "good" target system?

@ Should at least be exponentially stable!
@ If too simple: impossible to reach. If too complex: analysis is difficult
o (t, x) + Aok (t,x) =0,

Uf(tvx) +7"Ux(t7x) = (5+V(1‘,X)7
Be(t, x) — uBx(t,x) = 0.

ve(t,x) — pvx(t,x) = o u(t, x).

U(f,X) OL(f,X)
SO S .

Wv(t.,x)l V() B(t, x) Vv
0 1 x ? 1.X

a(t,0) = qB(t,0)

u(t,0) = qv(t,0)
B(t,1) = pa(t, 1)+ V(1)

v(t,1) = pu(t, 1)+ V(1)
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What is a "good" target system?

@ Should at least be exponentially stable!
@ If too simple: impossible to reach. If too complex: analysis is difficult

a(t, x) + Ao (t,x) =0,
Be(t, x) — uBx(t,x) = 0.

oft, x)

ur(t, x) + Ay (t, x) = o v(t, x),
ve(t,x) — pvx(t,x) = o u(t, x).

Iu(t,x)
(T, ¢
4 : v(t)

v(t,x)

B(t, x)

a(t,0) = qB(t,0)

u(t,0) = qv(t,0)
B(t,1) = pa(t, 1)+ V(1)

v(t,1) = pu(t, 1)+ V(1)

@ Simple target system (no in-domain couplings).
@ We may have removed stabilizing terms.
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What is a "good" target system?

@ Should at least be exponentially stable!

@ If too simple: impossible to reach. If too complex: analysis is difficult

ur(t, x) + hux(t, x) = o v(t, x),
vi(t,x) —uvx(t,x) = 6~ u(t,x).

u(t, x)

- ;
G 6, ot E )P G G, o
7 . <« V(1) ¥

v(t,x)
1 X

ot x) + Ao (t,x) = (_5+(X)B(17X),
BT(I,X)—,UBX(I,X):(_57(X)(X(t,X)
o(t,x)
)
B(t,x)l <« V(1)
; i

u(t,0) = qv(t,0)
v(t,1) = pu(t, 1)+ V(1)

(X(t,O):qﬁ(t,O)
B(t,1) = pa(t, 1) + V(1)
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What is a "good" target system?

@ Should at least be exponentially stable!
@ If too simple: impossible to reach. If too complex: analysis is difficult

ur(t, x) + hux(t, x) = o v(t, x), o (t,x) + Ao (1, x) = &1 (x)B(t, x),
ve(t,x) — pvx(t, x) = o u(t, x). Be(t, x) — uPx(t,x) =6~ (x)ot, x)
U(t,X) OL(f,X)
G G*E <5+E >P G 6‘5 6*5 >P
. ' «— V(1) + ' «— V(1)
v(t,x) B(t,x)
0 1 X 9 P X

(X(I,O) = qﬁ(l‘,O)

u(t,0) = qv(t,0)
B(t,1) = pa(t, 1)+ V(1)

v(t,1) = pu(t, 1)+ V(1)

@ In-domain couplings.
@ Smaller control effort?
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What is a "good" target system?

@ Should at least be exponentially stable!
@ If too simple: impossible to reach. If too complex: analysis is difficult

Introduce d.o.f in the design to obtain a class of easily parametrizable target system?
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Port-Hamiltonian Framework

@ Context: Interaction of physical systems with environment <+ power flow through ports.
@ Takes advantage of physical properties (passivity, dissipativity) of systems.
@ Could be useful to introduce good target systems candidates.
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Port-Hamiltonian Framework

@ Context: Interaction of physical systems with environment <+ power flow through ports.
@ Takes advantage of physical properties (passivity, dissipativity) of systems.
@ Could be useful to introduce good target systems candidates.

Idea: combining PHS and backstepping

Take advantage of both methodologies to design boundary feedback laws:
@ Use the Port-Hamiltonian framework to determine target systems with physical meaning
@ Use the backstepping methodology to map the original system to the target system

Control objective

Design the control law V/(t) s.t closed-loop system is equivalent to a target system with
specified properties.
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PHS formulation of clamped string

System equations:

{ p(x)a,zux)—ax(E(x) 2 (%)) = k()5 (t%),

S le=o(t) =0, E(1)%Y

Energy state variables:

Port-Hamiltonian System
G
a()«H 0 ax(pex)-)>(X1)
A\Xe) \Z(EW))  —ol) ) \Ke
0

E
with Hamiltonian density H(x) = ( E)X) L
p(x

= 1()—

) p _

) () =569

u(e),

: strain
: momentum density

aX )

& 5y = Pz (900X + Go(3()X)

ot

(1)(1))7 Go = (8 c(x) (x))

System energy: E(t) = 3 [o (E(x)Xi(t,x)2+p " (x)Xa(t,x)?) dx

Exchange through the actuated boundary in OL:

(1) = Jj (k)2
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Control objective

Change of internal power through actuation at the boundary x = 1:

@ k> 0: OL system stable — fasten . » )
stabilization: } impose a specific decay rate to £, using

- . . distributed damping assignment
@ else — stabilize the string dynamics

Control Objective

Design control law U(t) s.t dynamics of X equivalent to the dynamics of X = (Xi, X) satisfying

E?t <§;> N (aaX(EO(x)-) - (pf())> (2)

Class of target systems parametrized by K

In CL, energy decreases « K:

T 2
F o] ()
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Control strategy

Overall objective: Determine an invertible transform 7" mapping initial PHS to target system.

Indefinite damping c(x)
(X1, X2)

Specific damping K
(Xll XZ)
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Control strategy
Overall objective: Determine an invertible transform 7" mapping initial PHS to target system.

Specific damping K
(Xll XZ)

Indefinite damping c(x)
(XI'XZ) ?

@ Expression in the Riemann coordinates + Backstepping transformation
o (t, x) + Ao (t, x

u(t,x) + Ay (t,x) = o v(t,x), )
Be(t,x) —uBx(t,x) =6

vi(t,x) —uvx(t, x) = 6~ u(t, x).

u(t, x) ot x)
G G*E G+E )P G 6*5 5t )F_)
¥ - «— V(1) ¥ :
v(t,x) B(t,x)
1 x

u(t,0) = qv(t,0)
v(t,1) = pu(t,1)+ V(1) B(t,1) =paft,1)



Backstepping transformations

Main idea

Use an invertible Volterra integral transform to replace in-domain coupling terms Gi(X) by
adequate terms &= (x)).

Volterra transform of the second kind
OC(t,X) _ tX) y)
(B(nx))*(m x)) A ?C(Xy( ty))(y)dy

Kernel X = (ﬁi ﬁt) uniquely defined (kernel equations).

Control input

Control input V(t) directly follows from the backstepping methodology

V(O = (Pt )+ [ (K (1,9) =K (1,)u(t)

+(K™(1,y) =pK (1, 1)v(t,y)dy.

We obtain U(t) for the initial system.
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Simulation results

{ POOTE(tx) = & (EC)3().
Wlao() =0, E(1)3¥ ] () = UL,

Constant ceefficients p = 936kg.m~3, E = 4.14GPa.

Displacement in open-Loop

0.025
—— Closed-loop o
0.02 T
e

w(t, z)

0015 05 10
—_ 0o °
-~ :+
space X time ¢ [s]
W Displacement in Closed-Loop
0.01
\ & 005
0.005 =
5 0
\\ 008
1
o 05 Y 15 20
0 5 10 15 20 0 o 5
space X time t [s]

time t [s]

26/31



Development of easily parametrizable target systems

@ PHS framework introduction of degrees of freedom in the design
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Development of easily parametrizable target systems

@ PHS framework introduction of degrees of freedom in the design

@ Next steps:
> Design of analytical tools to quantify the performance of the closed-loop system w.r.t a given set
of specifications.

» Tuning methods to use the available degrees of freedom best w.r.t this set of performance
specifications.

» Toolbox analogous to what exists for finite-dimensional systems.
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Development of easily parametrizable target systems

@ PHS framework introduction of degrees of freedom in the design

@ Next steps:
> Design of analytical tools to quantify the performance of the closed-loop system w.r.t a given set
of specifications.

» Tuning methods to use the available degrees of freedom best w.r.t this set of performance
specifications.

» Toolbox analogous to what exists for finite-dimensional systems.

@ Advantages compared to simple PID controllers?
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Late-lumping approximation

ur(t,x) 4+ Aux(t, x) = ot v(t, x),
ve(t,x) — pvx(t,x) = o u(t, x),
u(t,0) = qv(t,0) v(t,1) =pu(t,1)+ V(t).

Backstepping controller: V(1) = [J K(y)u(t,y)+L(1,y)v(t,y)dy.

o Computational effort related to the numerical implementation.
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Late-lumping approximation

ur(t,x) 4+ Aux(t, x) = ot v(t, x),
ve(t,x) — pvx(t,x) = o u(t, x),
u(t,0) = qv(t,0) v(t,1) =pu(t,1)+ V(t).

Backstepping controller: V(1) = [J K(y)u(t,y)+L(1,y)v(t,y)dy.

o Computational effort related to the numerical implementation.
@ Finite-dimensional approximation of the output-feedback controller: model-reduction.

@ Late-lumping controllers: guarantees of convergence? Advantages compared to
early-lumping strategies?
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Approximation of the control input

@ V, : Approximation of the control input V(t)

@ Is the PDE system with approximated control input still stable?

ur(t,x) 4+ Aux(t, x) = 6t v(t,x),
ve(t,x) — v (t,x) = o u(t, x),
u(t,0) = qv(t,0) v(t,1)=pu(t,1)+ Va(t).
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ve(t,x) — v (t,x) = o u(t, x),
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@ Same backstepping transformation
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Approximation of the control input

@ V, : Approximation of the control input V(t)

@ Is the PDE system with approximated control input still stable?

ur(t,x) 4+ Aux(t, x) = 6t v(t,x),
ve(t,x) — v (t,x) = o u(t, x),
u(t,0) = qv(t,0) v(t,1)=pu(t,1)+ Va(t).

@ Same backstepping transformation
ou(t,x) 4+ Ao (t,x) =0,
Bf(tvx) 7:uBX(t7X) =0,
O6(1’70) = qB(taO) B(t71) = p(X(t,1)+ Vn(t) - V(t)

@ Stability analysis using a Lyapunov function.
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Lyapunov analysis

o (t, x) + Ao (t, x) =0,
Be(t, x) — uPx(t,x) =0,
o(t,0) = qB(t,0) B(t,1) = pa(t, 1)+ Va(t) — V(1).

1e VX

Lyapunov function: W(t) = [y S5—02(t,x) + qzﬁw B2(t, x)dx: equivalent to L2-norm (v > 0).
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@ Differentiation w.r.t time

W(t) < —viW(t) + C(Va(t) — V(t))2.
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Lyapunov analysis

o (t, x) + Ao (t, x) =0,
Be(t, x) — uPx(t,x) =0,
o(t,0) = qB(t,0) B(t,1) = pa(t, 1)+ Va(t) — V(1).

1e VX

Lyapunov function: W(t) = [y S5—02(t,x) + qzﬁw B2(t, x)dx: equivalent to L2-norm (v > 0).

@ Differentiation w.r.t time
W(t) < —viW(t) + C(Va(t) — V(1))%
@ Stability if uniform convergence of the approximation scheme

[Va(t) — V(8)] < Chl|(u,v)||;2, where C,— 0
= W(t) < -mW(t), for nlarge enough.
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Lyapunov analysis

o (t, x) + Ao (t, x) =0,
Be(t, x) — uPx(t,x) =0,
o(t,0) = qB(t,0) B(t,1) = pa(t, 1)+ Va(t) — V(1).

1e VX

Lyapunov function: W(t) = [y S5—02(t,x) + qzﬁw B2(t, x)dx: equivalent to L2-norm (v > 0).

@ Differentiation w.r.t time
W(t) < —viW(t) + C(Va(t) — V(1))%
@ Stability if uniform convergence of the approximation scheme

[Va(t) — V(8)] < Chl|(u,v)||;2, where C,— 0
= W(t) < -mW(t), for nlarge enough.

@ Approximations schemes: Galerkin approximation, machine-learning (DeepONet)
— recent publications, comparisons on test-case studies, no general results.
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Conclusions and Perspectives

@ Backstepping controllers fo hyperbolic system

> \olterra change of coordinates — target system with a simpler structure.
> Robustness analysis using a time-delay representation.
» Extensions to networks of hyperbolic systems.
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@ Development of easily parametrizable target systems

» PHS framework to introduce physical degrees of freedom.
» Developments of analytical tools to quantify closed-loop performance.
» Tuning methods to use the available dof best w.r.t a set of performance specifications.

@ Approximation of the control law to reduce the numerical burden

> Model reduction strategies: Galerkin approximation, Machine-learning emulations.
> Stability guarantees using Lyapunov analysis.
> Necessary to obtain Lyapunov function for general hyperbolic system or TDS representation.

N T
2(0)= Y Ace(t=%)+ /0 £(v)z(t —v)av.
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Conclusions and Perspectives

@ Backstepping controllers fo hyperbolic system

> \olterra change of coordinates — target system with a simpler structure.
> Robustness analysis using a time-delay representation.
» Extensions to networks of hyperbolic systems.

@ Development of easily parametrizable target systems

» PHS framework to introduce physical degrees of freedom.
» Developments of analytical tools to quantify closed-loop performance.
» Tuning methods to use the available dof best w.r.t a set of performance specifications.

@ Approximation of the control law to reduce the numerical burden

> Model reduction strategies: Galerkin approximation, Machine-learning emulations.
> Stability guarantees using Lyapunov analysis.
> Necessary to obtain Lyapunov function for general hyperbolic system or TDS representation.

N T
2(t)= Y Acz(t—m) + / £(v)2(t —v)av.
k=1 0
@ Benchmark and experimental validation.
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