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Introduction: Hyperbolic systems

Phenomena with finite propagation speeds: waves, balance laws, conservation laws.

∂tt w(t,x)− c2
∂xx w(t,x) = 0.

Examples: mass, charge, energy, momentum

Complex engineering problems: stabilization, observer design, parameter estimation.

Stringent operating, environmental and economical requirement
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Control and estimation of mechanical vibrations Control of a micro-endoscope
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Introduction: Hyperbolic systems

Phenomena with finite propagation speeds: waves, balance laws, conservation laws.

∂tt w(t,x)− c2
∂xx w(t,x) = 0.

Examples: mass, charge, energy, momentum

Complex engineering problems: stabilization, observer design, parameter estimation.

Stringent operating, environmental and economical requirement

Traffic congestion control (avoid stop-and-go oscillations)
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Introduction: general objective

Objective

Develop a systematic framework for the practical control of hyperbolic systems

Design of explicit control laws: constructive methods.

Easily implementable strategies: low computational burden.

Possible real implementation: performance specifications.

Multiple theoretical approaches

Optimization controllers [Russel, Lions]

Lyapunov-based controllers [Bastin, Coron, Prieur]

Flatness-based methods [Meurer]

Backstepping controllers [Krstic]

Breakthroughs but several practical limitations.
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Toy problem: clamped string

Toy system: clamped string with indefinite in-domain
damping and space-varying coefficients
−→ towards generalization to more complex systems

ρ(x)
∂2w
∂t2 (t,x) =

∂

∂x

(
E(x)

∂w
∂x

(t,x)

)
−κ(x)

∂w
∂t

(t,x)

ρ(x) mass density, E(x) Young’s modulus ∈ C1([0,1])+, κ(x) ∈ C0([0,1]) in-domain damping.

Boundary conditions:

No movement in x = 0: ∂w
∂t |x=0(t) = 0

Torque control input in x = 1: E(1) ∂w
∂x |x=1(t) = U(t)

Initial conditions: w(0,x) = w0(x) ∈ C1([0,1]).

Riemann coordinates: u(t,x) = wt (t,x)−
√

E(x)
ρ(x) wx (t,x), v(t,x) = wt (t,x) +

√
E(x)
ρ(x) wx (t,x)
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System under consideration

System of scalar balance laws: simple test case to present generic concepts

ut (t,x) + λ(x)ux (t,x) = σ
++(x)u(t,x)+σ

+(x)v(t,x),

vt (t,x)−µ(x)vx (t,x) = σ
−−(x)v(t,x)+σ

−(x)u(t,x),

u(t,0) = qv(t,0) v(t,1) = ρu(t,1) + V(t).

u(t,x)

v(t,x)

σ− σ+q ρ

V(t)

0 1 x

Diagonal terms can be removed with exp. change of coordinates.

Couplings→ instability.

Distributed states and boundary control.

5 / 31



Outline of the presentation

1 An introduction to the backstepping approach

2 Design of robust control laws for hyperbolic systems

3 Development of easily parametrizable target systems.

4 Integration, approximation, and model reduction.
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Backstepping for PDEs

Extension of finite-dimensional backstepping [Krstic et al.; 1995]

Introduced for parabolic PDEs [Balogh, Krstic; 2002]

Second-order hyperbolic PDEs [Krstic et al.; 2006]

First-order hyperbolic PDEs [Krstic, Smyshlyaev; 2008]

Systems of First-order hyperbolic PDEs [Vazquez; 2012], [Di Meglio et al.; 2013]
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Backstepping methodology

Main idea Use an integral transform (classically Volterra transform of the second kind):

w(t,x) = u(t,x)−
∫ x

0
p(x ,y)u(t,y)dy

to map the original system (to stabilize) to a stable target system .
−→ Constructive design of control laws!

u(0,x)

u(t,x)

eAOLt eAd t

w(0,x)

w(t,x)

T

T−1

Limitations

Choice of an adequate target system

Proof of existence and invertibility of an adequate transform

Control effort, closed-loop properties and implementation
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Example of two scalar equations: backstepping transformation

ut (t,x) + λux (t,x) = σ
+v(t,x),

vt (t,x)−µvx (t,x) = σ
−u(t,x),

u(t,0) = qv(t,0) v(t,1) = ρu(t,1) + V(t).

u(t,x)

v(t,x)

σ− σ+q ρ

V(t)

0 1 x

Map the original system to a target system for which the stability analysis is easier.
Variable change: integral transformation.

Example: α(t,x) = u(t,x)−
∫ x

0
K uu(x ,ξ)u(t,ξ) + K uv (x ,ξ)v(t,ξ)dξ

β(t,x) = v(t,x)−
∫ x

0
K vu(x ,ξ)u(t,ξ) + K vv (x ,ξ)v(t,ξ)dξ

Difficulties:
Find the target system.
Existence of the kernel K (set of PDEs to be satisfied).
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ξ

10

1

x =
 ξ

x

T
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Objective: Move the in-domain coupling terms at the actuated boundary.

ut (t,x) + λux (t,x) = σ
+v(t,x),

vt (t,x)−µvx (t,x) = σ
−u(t,x).

u(t,x)

v(t,x)

σ− σ+q ρ

V(t)

0 1 x

u(t,0) = qv(t,0)

v(t,1) = ρu(t,1) + V(t)

αt (t,x) + λαx (t,x) = 0,

βt (t,x)−µβx (t,x) = 0.

α(t,x)

β(t,x)

q ρ

V̄(t)

0 1 x

α(t,0) = qβ(t,0)

β(t,1) = ρα(t,1) + V(t)

−
∫ 1

0
Nα(ξ)α(t,ξ) + Nβ(ξ)β(t,ξ)dξ.

Natural control law

V(t) =−ρα(t,1) +
∫ 1

0

(
Nα(ξ)α(t,ξ) + Nβ(ξ)β(t,ξ)

)
dξ.
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Backstepping transformation

β(t,x) = v(t,x)−
∫ x

0
K vu(x ,ξ)u(t,ξ) + K vv (x ,ξ)v(t,ξ)dξ.

We have: vt −µvx = σ−u We want: βt −µβx = 0

Differentiation w.r.t space

−µβx (t,x) =−µvx (t,x) + µK vu(x ,x)u(t,x) + µK vv (x ,x)v(t,x)

+
∫ x

0
µK vu

x (x ,ξ)u(t,ξ) + µK vv
x (x ,ξ)v(t,ξ)dξ

Differentiation w.r.t time

βt (t,x) = vt (t,x)−
∫ x

0
−K vu(x ,ξ)λux (t,ξ) + K vv (x ,ξ)µvx (x ,ξ)

−
∫ x

0
K vu(x ,ξ)σ

+v(t,ξ) + K vv (x ,ξ)σ
−u(t,ξ)dξ
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Integration by parts + use of B.Cs.
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Kernel equations

0 = βt (t,x)−µβx (t,x)

= (σ
−+ + λK vu(x ,x) + µK vu(x ,x))u(t,x) + (λK vu(x ,0)q−µK vv (x ,0))v(t,0)

−
∫ x

0
(λK vu

ξ
(x ,ξ)−µK vu

x (x ,ξ) + K vv (x ,ξ)σ
−)u(t,ξ)dξ

−
∫ x

0
(µK vv

ξ
(x ,ξ) + µK vv

x (x ,ξ) + K vu(x ,ξ)σ
+)v(t,ξ)dξ.


µK vv

ξ
(x ,ξ) + µK vv

x (x ,ξ) =−K vu(x ,ξ)σ−,

λK vu
ξ

(x ,ξ)−µK vu
x (x ,ξ) =−K vv (x ,ξ)σ−,

λK vu(x ,0)q = µK vv (x ,0), K vu(x ,x) = σ−

λ+µ

Integral equations + successive approximations→Well-posedness.

Invertibility of the Volterra transformation.
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Finite-time stabilization?

αt (t,x) + λαx (t,x) = 0, βt (t,x)−µβx (t,x) = 0,

α(t,0) = qβ(t,0),

β(t,1) = ρα(t,1)−
∫ 1

0

(
Nα(ξ)α(t,ξ) + Nβ(ξ)β(t,ξ)

)
dξ + V(t).

V(t) =−ρα(t,1) +
∫ 1

0

(
Nα(ξ)α(t,ξ) + Nβ(ξ)β(t,ξ)

)
dξ

Finite time convergence: performance� robustness.
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β(t,x) = β(t− 1− x
µ

,1) = 0, α(t,x) = α(t− x
λ
,0) = qβ(t− x

λ
,0) = 0,

The system is finite-time stable!

Finite time convergence: performance� robustness.
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Finite time convergence: performance� robustness.
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Robustness analysis

αt (t,x) + λαx (t,x) = 0

βt (t,x)−µβx (t,x) = 0

α(t,0) = qβ(t,0)

β(t,1) = ρα(t,1)−
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0

(
Nα

α(t,ξ) + Nβ(ξ)β(t,ξ)
)

dξ + V(t)

Difference equation satisfied by β(t,1)

For all t > 1
λ

+ 1
µ = τ, we have

β(t,1) = ρqβ(t− τ,1)−
∫

τ

0
N(ξ)β(t−ξ,1)dξ + V(t)
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Delay-robust stabilization

β(t,1) = ρqβ(t− τ,1)−
∫

τ

0
N(ξ)β(t−ξ,1)dξ + V(t)

Delay δ acting on V(t) =−ρqβ(t− τ,1) +
∫ 1

0 N(ξ)β(t−ξ,1)dξ.

Closed-loop system:

β(t,1) = ρqβ(t− τ,1)−ρqβ(t− τ−δ,1)−
∫

τ

0
N(ξ)(β(t−ξ,1)−β(t−δ−ξ,1))dξ.

⇒ Problem if |ρq| ≥ 1
2

Solution: renounce to finite-time stabilization

V(t) =−ρ̃qβ(t− τ,1) +
∫ 1

0
N(ξ)β(t−ξ,1)dξ

Delay-robustness under the NSC |ρ̃|< 1−|ρq|
|q| .
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Open-loop analysis: V (t)≡ 0

β(t,1) = ρqβ(t− τ,1)−
∫

τ

0
N(ξ)β(t−ξ,1)dξ

Open loop analysis

If the open loop transfer function has an infinite number of poles in the RHP, the system cannot
be delay-robustly stabilized.

Open-loop characteristic equation:

D(s) = 1−ρqe−τs︸ ︷︷ ︸
F(s)

+
∫

τ

0
N(ξ)e−ξsdξ︸ ︷︷ ︸

H(s)

= 0

If |ρq|> 1: F has an infinite number of zeros in the RHP and H is proper. Thus D has an
infinite number of zeros in the RHP
⇒ Delay-robust stabilization is impossible if |ρq|> 1.
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Delay-robust state feedback

Delay-robust control law

V(t) =−ρ̃u(t,1) +
∫ 1

0

(
Kρ̃

vu(1,ξ)u(t,ξ) + Kρ̃
vv (1,ξ)v(t,ξ)

)
dξ

Three different situations: trade-off performance/robustness

If |ρq| ≥ 1→ delay-robust stabilization is impossible.

If 1 > |ρq| ≥ 1
2 → renounce to finite-time stabilization

If 1
2 > |ρq| → finite-time stabilization is possible.

Time [s]
0 5 10 15 20 25 30 35 40 45 50

O
ut
pu

t

0

1

2

3

4

5

6

Control, ρ=0 
Control, ρ=0.3 
Control, ρ=0.6

˜
˜
˜
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Different robustness problems

ut (t,x) + λux (t,x) = σ
+−v(t,x)

vt (t,x)−µvx (t,x) = σ
−+u(t,x)

u(t,0) = qv(t,0) v(t,1) = ρu(t,1) + V(t)

Measurement: y(t) = u(t,1).

Delay acting on the actuation.

Delay acting on the measurement.

Uncertainties on the transport velocities.

Uncertainties on the coupling terms.

Neglected dynamics...
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Different robustness problems

ut (t,x) + λ̄ux (t,x) = σ̄
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vt (t,x)− µ̄vx (t,x) = σ̄
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Different robustness problems

ut (t,x) + λux (t,x) = σ
+−v(t,x)

vt (t,x)−µvx (t,x) = σ
−+u(t,x)

u(t,0) = qv(t,0) v(t,1) = ρu(t,1) + V(t)

Measurement: y(t) = u(t,1).

Backstepping method to design stabilizing control laws and dual state-observers.

The robustness can be proved using the time-delay representation.

Introduction of simple degrees of freedom in the design.

Trade-offs performance-robustness, disturbance rejection-noise sensistivity.

18 / 31



Backstepping methodology

Main idea Use an integral transform (classically Volterra transform of the second kind):

w(t,x) = u(t,x)−
∫ x

0
p(x ,y)u(t,y)dy

to map the original system (to stabilize) to a stable target system .
−→ Constructive design of control laws!

u(0,x)

u(t,x)

eAOLt eAd t

w(0,x)

w(t,x)

T

T−1

Limitations

Choice of an adequate target system

Proof of existence and invertibility of an adequate transform

Control effort, closed-loop properties
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What is a "good" target system?

Should at least be exponentially stable!

If too simple: impossible to reach. If too complex: analysis is difficult
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Simple target system (no in-domain couplings).

We may have removed stabilizing terms.
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What is a "good" target system?

Should at least be exponentially stable!

If too simple: impossible to reach. If too complex: analysis is difficult

Introduce d.o.f in the design to obtain a class of easily parametrizable target system?

20 / 31



Port-Hamiltonian Framework

Context: Interaction of physical systems with environment↔ power flow through ports.

Takes advantage of physical properties (passivity, dissipativity) of systems.

Could be useful to introduce good target systems candidates.

Idea: combining PHS and backstepping

Take advantage of both methodologies to design boundary feedback laws:

Use the Port-Hamiltonian framework to determine target systems with physical meaning

Use the backstepping methodology to map the original system to the target system

Control objective

Design the control law V(t) s.t closed-loop system is equivalent to a target system with
specified properties.
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PHS formulation of clamped string

System equations:{
ρ(x) ∂2w

∂t2 (t,x) = ∂

∂x

(
E(x) ∂w

∂x (t,x)
)
−κ(x) ∂w

∂t (t,x),
∂w
∂t |x=0(t) = 0, E(1) ∂w

∂x |x=1(t) = U(t),

Energy state variables:{
X1(x , t) = ∂w

∂x (x , t) : strain
X2(x , t) = ρ(x) ∂w

∂t (x , t) : momentum density

Port-Hamiltonian System

∂

∂t

(
X1
X2

)
=

(
0 ∂

∂x

(
1

ρ(x) ·
)

∂

∂x (E(x)·) −c(x)

)(
X1
X2

)
⇔ ∂X

∂t
= P1

∂

∂x
(H (x)X) + G0(H (x)X)

with Hamiltonian density H (x) = (
E(x) 0

0 1
ρ(x)

), c(x) = κ(x)
ρ(x) , P1 = ( 0 1

1 0 ), G0 = ( 0 0
0 −c(x)ρ(x)).

System energy: E(t) = 1
2

∫ 1
0

(
E(x)X1(t,x)2 + ρ−1(x)X2(t,x)2

)
dx .

Exchange through the actuated boundary in OL: dE
dt (t) =−

∫ 1
0

(
κ(x)( X2(t,x)

ρ(x) )2
)

dx .
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Control objective

Change of internal power through actuation at the boundary x = 1:

κ > 0: OL system stable 7→ fasten
stabilization;

else 7→ stabilize the string dynamics

}
impose a specific decay rate to E ,using

distributed damping assignment

Control Objective

Design control law U(t) s.t dynamics of X equivalent to the dynamics of X̄ = (X̄1, X̄2) satisfying

∂

∂t

(
X̄1
X̄2

)
=

(
0 ∂

∂x

(
1

ρ(x) ·
)

∂

∂x (E(x)·) −K

)(
X̄1
X̄2

)
,

Class of target systems parametrized by K

In CL, energy decreases ∝ K :

dĒ
dt

=−K
∫ 1

0

(
X̄2(x , t)

ρ(x)

)2

dx .
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Control strategy

Overall objective: Determine an invertible transform T mapping initial PHS to target system.

Expression in the Riemann coordinates + Backstepping transformation

ut (t,x) + λux (t,x) = σ
+v(t,x),

vt (t,x)−µvx (t,x) = σ
−u(t,x).

u(t,x)

v(t,x)

σ− σ+q ρ

V(t)

0 1 x

u(t,0) = qv(t,0)

v(t,1) = ρu(t,1) + V(t)

αt (t,x) + λαx (t,x) = σ̄
+(x)β(t,x),

βt (t,x)−µβx (t,x) = σ̄
−(x)α(t,x).

α(t,x)

β(t,x)

σ̄− σ̄+q ρ̄

0 1 x

α(t,0) = qβ(t,0)

β(t,1) = ρ̄α(t,1)
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Backstepping transformations

Main idea

Use an invertible Volterra integral transform to replace in-domain coupling terms σ±(x) by
adequate terms σ̄±(x)).

Volterra transform of the second kind(
α(t,x)
β(t,x)

)
=

(
u(t,x)
v(t,x)

)
−

∫ x

0
K (x ,y)

(
u(t,y)
v(t,y)

)
(y)dy

Kernel K = ( K++ K+−

K−+ K−−
) uniquely defined (kernel equations).

Control input

Control input V(t) directly follows from the backstepping methodology

V(t) = (ρ̄−ρ)u(t,1) +
∫ 1

0
(K−+(1,y)− ρ̄K++(1,y))u(t,y)

+ (K−−(1,y)− ρ̄K+−(1,y))v(t,y)dy .

We obtain U(t) for the initial system.
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Simulation results

{
ρ(x) ∂2w

∂t2 (t,x) = ∂

∂x

(
E(x) ∂w

∂x (t,x)
)
,

∂w
∂t |x=0(t) = 0, E(1) ∂w

∂x |x=1(t) = U(t),

Constant cœfficients ρ = 936kg.m−3,E = 4.14GPa.
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Development of easily parametrizable target systems

PHS framework introduction of degrees of freedom in the design

Next steps:
I Design of analytical tools to quantify the performance of the closed-loop system w.r.t a given set

of specifications.

I Tuning methods to use the available degrees of freedom best w.r.t this set of performance
specifications.

I Toolbox analogous to what exists for finite-dimensional systems.

Advantages compared to simple PID controllers?
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Late-lumping approximation

ut (t,x) + λux (t,x) = σ
+v(t,x),

vt (t,x)−µvx (t,x) = σ
−u(t,x),

u(t,0) = qv(t,0) v(t,1) = ρu(t,1) + V(t).

Backstepping controller: V(t) =
∫ 1

0 K (y)u(t,y) + L(1,y)v(t,y)dy .

Computational effort related to the numerical implementation.

Finite-dimensional approximation of the output-feedback controller: model-reduction.

Late-lumping controllers: guarantees of convergence? Advantages compared to
early-lumping strategies?
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Approximation of the control input

Vn : Approximation of the control input V(t)

Is the PDE system with approximated control input still stable?

ut (t,x) + λux (t,x) = σ
+v(t,x),

vt (t,x)−µvx (t,x) = σ
−u(t,x),

u(t,0) = qv(t,0) v(t,1) = ρu(t,1) + Vn(t).

Same backstepping transformation

αt (t,x) + λαx (t,x) = 0,

βt (t,x)−µβx (t,x) = 0,

α(t,0) = qβ(t,0) β(t,1) = ρα(t,1) + Vn(t)−V(t).

Stability analysis using a Lyapunov function.
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Lyapunov analysis

αt (t,x) + λαx (t,x) = 0,

βt (t,x)−µβx (t,x) = 0,

α(t,0) = qβ(t,0) β(t,1) = ρα(t,1) + Vn(t)−V(t).

Lyapunov function: W (t) =
∫ 1

0
e−νx

λ
α2(t,x) + q2eνx

µ β2(t,x)dx : equivalent to L2-norm (ν > 0).

Differentiation w.r.t time

Ẇ (t)≤−ν1W (t) + C(Vn(t)−V(t))2.

Stability if uniform convergence of the approximation scheme

|Vn(t)−V(t)| ≤ Cn||(u,v)||L2 , where Cn→ 0

⇒ Ẇ (t)≤−ηW (t), for n large enough.

Approximations schemes: Galerkin approximation, machine-learning (DeepONet)
→ recent publications, comparisons on test-case studies, no general results.
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Conclusions and Perspectives

Backstepping controllers fo hyperbolic system
I Volterra change of coordinates→ target system with a simpler structure.
I Robustness analysis using a time-delay representation.
I Extensions to networks of hyperbolic systems.

Development of easily parametrizable target systems
I PHS framework to introduce physical degrees of freedom.
I Developments of analytical tools to quantify closed-loop performance.
I Tuning methods to use the available dof best w.r.t a set of performance specifications.

Approximation of the control law to reduce the numerical burden
I Model reduction strategies: Galerkin approximation, Machine-learning emulations.
I Stability guarantees using Lyapunov analysis.
I Necessary to obtain Lyapunov function for general hyperbolic system or TDS representation.

z(t) =
N

∑
k=1

Ak z(t− τk ) +
∫

τ

0
f (ν)z(t−ν)dν.

Benchmark and experimental validation.
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