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Inverse initial data problems

We study the inverse problem of determining initial data of the
well-posed linear system

{u'(t) = Au(t), te(0,6],

u(0) =up € H,
from the observations
v(t) = Cu(t), t € (0,0].

C < L(D(A), Y) is an observation operator for (€");>o.
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Logarithmic stability

We aim to show a logarithmic stability estimate for a class of initial

data:
C

—log HCUHLZ(I,Y))O“

luollw <
(

for some a € (0,1].
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Logarithmic stability

We aim to show a logarithmic stability estimate for a class of initial

data:
C

—log HCUHLZ(I,Y))O“

luol[ <
(

for some a € (0,1].

General idea:
[Observability inequality + Logarithmic convexity = Logarithmic stability]
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Observability

e The observation operator C is admissible if kg > 0:

0
Wuo € D(A), /0 e |3 dt < 13 fluo -

e The system is final state observable in time 0 if dicg > 0:

0
Yo € D(A). [}, <8 [ cetun|[at
0
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Logarithmic convexity

Consider the abstract parabolic system

{ U (t) = Au(t), te(0,8],
U(O) =Uu€H.

@ 0 > 0is afinal time for the system.
@ A:D(A) C H— His the generator Co-semigroup (e*)

t>0°
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Self-adjoint case

Lemma (Agmon-Nirenberg (1963))
Assume that A is self-adjoint. The solution u satisfies

lu(Oll < lluo|"~#[|u(8)|?

forall0 <t<®.

Key ideas: Differentiate log ||u(t)|| twice with respect to t and use
symmetry and Cauchy-Schwartz inequality.
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Self-adjoint case

Lemma (Agmon-Nirenberg (1963))
Assume that A is self-adjoint. The solution u satisfies

lu(Oll < lluo|"~#[|u(8)|?

forall0 <t<®.

Key ideas: Differentiate log ||u(t)|| twice with respect to t and use
symmetry and Cauchy-Schwartz inequality.

Remark:
A function £(t) that is C?[0,0) is log-convex if and only if the
differential inequality

()" (1) —(F(1)? >0 (1)

holds for all t > 0.
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Proof.
Since D(A?) is dense in H, it suffices to consider uy € D(A?)\ {0}.
We have

d
a”“(”

and since A is self-adjoint,

d2

G VO = 4 AuD)]”.

It follows that
2 2
(1001 ) 12 ) (ARl - (auto). o))

By Cauchy-Schwarz inequality, we obtain

O ) 1@~ (G luF) 0. o<t<o. @




d 2 d?
(1) B2 51017 =11 i o8 (101?) 20
(3)
Therefore, the function t — log||u(t)|| is convex on [0, 6]. We obtain

_t t
lu() < lluoll'~ ¢ u(B)]®

forall0 <t <.




Remarks

e Logarithmic convexity
t

lu()] < Klluoll™#[|u(®)I|*

implies the backward uniqueness for the solution: if u(6) = 0, then
Ug = 0.

Qq/D



Remarks

e Logarithmic convexity

t

lu()] < Klluoll™#[|u(®)I|*

implies the backward uniqueness for the solution: if u(6) = 0, then
Ug = 0.

e Logarithmic convexity holds for group of isometries.

Qq/9



Remarks

e Logarithmic convexity
t

lu()] < Klluoll™#[|u(®)I|*

implies the backward uniqueness for the solution: if u(6) = 0, then
Ug = 0.

e Logarithmic convexity holds for group of isometries.

e A well-posed problem need not satisfy logarithmic convexity:

ur+uy =0, u(t,0)=0, u(0,x)=up, wherete (0,08),x e (0,1).
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Stability estimate

@ 2001: M. YAMAMOTO, J. Zou, logarithmic stability for initial data
in heat equation by logarithmic convexity and observability
inequality.
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Stability estimate

@ 2001: M. YAMAMOTO, J. Zou, logarithmic stability for initial data
in heat equation by logarithmic convexity and observability
inequality.

@ 2006: M. CRISTOFOL, P. GAITAN, H. RAMOUL, logarithmic
stability for a coupled system using one observation and an
extension of the logarithmic convexity.

@ 2009: J. LI, M. YAMAMOTO, J. ZoU, stability and numerical
reconstruction of initial data for a general parabolic equation.

@ 2011: G. GARcCIA, T. TAKAHASHI, Logarithmic stability for
abstract self-adjoint dissipative operators.
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Stability estimate in the self-adjoint case

For fixed € € (0,1) and M > 0, consider

Tem = {uo € D((—AY?) : lollp(_ye) < M}.

Theorem (Garcia-Takahashi (2011))
We assume that uy € Ze » and the system is final state observable in

1 1
time © > 0. Forp € <1,1£> ands € <0,1 —p>,3K>O:

Tl

[uolly < K(—logHCUHL?(o,e;Y))_ )

provided that ||Cul|2(06;v) < 1.
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Analytic Non necessarily self-adjoint semigroups

Let A be the generator of a bounded analytic semigroup (e’A)tZO of
T
angle y € (0, 5}. Set

Yy ={ze€C\{0}: |argz| <y},
andlet K >1and k > 0:

e < KeRez  on T,
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General logarithmic convexity

Theorem (Krein-Prozorovskaya (1960))

Let uy € H. The solution satisfies
lu(t)]] < Ke 0|y =] u(B)]| ("),

where w is the harmonic function on the strip Sy

Im4
/Q
7 N
S 7
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0 R>e
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o
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The harmonic function

The harmonic function w is given by

_ Re (hq(z))

w(z) =~

. h(2)=fog(2), o(2)=0sin® (72%)

f(z) = es;:‘"/oe t==' (1) "= dt.
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The harmonic function

Incase y =7,

t
w(z) = r Vz=t+is€ Sx.

In case y < 3, the harmonic function w is "not explicit" w.r.t. z. Here,

we can to bound it from below:

Lemma
The harmonic function w satisfies the inequality

w22 ()7 (5)7 o<tse
T\ Siny 0
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Logarithmic stability

Theorem (Ait Ben Hassi-Chorfi-Maniar (2023))
Assume that uy € Ze m and the system is final state observable in 6.
Forpe (1,7;) ands € (0,1 = :—)) 3Ky > 0:

Tl

v (2)

T (*pr|0g||cu||/.2(o,e;y)) 27\“ 7

ol < Ki

2 2y
where ¢y = - <S_:IW> , provided that ||Cul|,2(o.6,v) is sufficiently
| 6;

small.
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Ornstein—Uhlenbeck equation (Analytic case)

Consider the Ornstein-Uhlenbeck equation

0ty = Ay+Bx-Vy, 0<t<0, xcRV,
Ylt=0 = Yo, xeRN.

B be areal constant N x N-matrix.
KLIBANOV: logarithmic stability by Carleman estimates for bounded

coefficients operators.
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Ornstein—Uhlenbeck operator

e The operator A:= A+ Bx -V, with its maximal domain,

generates a (Ornstein-Uhlenbeck) Co-semigroup on L2 (RV).

e Spectral condition:

6(B)CcC—:={z€C:Rez< 0}

guarantees the existence of an invariant measure yu for the
Ornstein-Uhlenbeck semigroup.

e The Ornstein-Uhlenbeck semigroup on L% := L2 (RN, du) is
analytic.

T
e The analyticity angle y is such that y < 2 in general.

References: R. Chill, E. Fasangova, G. Metafune, D. Pallara, A.
Lunardi, ...

18/9¢



Observability inequality

Observation region: The observation operator: C = 1,

for an observation region m C RN:

B,r>0VyeR 3y cw, B(y,r)Cwand |y—y|<3s.

(L. Miller 2005, J. Le Rousseau & I. Moyano 2016).
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Observability inequality

Observation region: The observation operator: C = 1,

for an observation region m C RN:

B,r>0VyeR 3y cw, B(y,r)Cwand |y—y|<3s.

(L. Miller 2005, J. Le Rousseau & I. Moyano 2016).

Example : open sets o such that RV \ @ is bounded.

Proposition (Beauchard-Pravda Strarov (2018))
Jke = Ke(,0) > 0:

10,1y <% [ It gyt
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Stability estimate

Proposition

1 1
Letp e 1,18> ands € <0,1 — p> . dK; > 0 such that, for all

1Yol e < M, we have

(@)
7 (—oyplog ¥z (o.0us(an) ) &

||YO||L§ < Ki

provided that ||y || 12(0.6:12(w)) is sulfficiently small.
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Stability estimate

Proposition

1 1
Letp e 1,18> ands € <0,1 — p> . 3Ky > 0 such that, for all

||YO||H5E < M, we have

(@)
7 (—oyplog ¥z (o.0us(an) ) &

||YO||L5 < Ki

provided that ||y || 12(0.6:12(w)) is sufficiently small.

[4 E. M. Ait Ben Hassi, S. E. Chorfi and L. Maniar, Inverse problems
for general parabolic systems and application to
Ornstein-Uhlenbeck equation, Discrete Contin. Dyn. Syst. - S
(2023), doi: 10.3934/dcdss.2022212.
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Ornstein-Uhlenbeck equation in L2 (RV) (non-analytic case)

Let N > 1 be an integer and let ® > 0 be a fixed time.

We consider the Ornstein-Uhlenbeck equation given by

{Btu:Au—i-Bx-Vu, 0<t<H, xecRN @

U|[:0 = Up € L2 (RN) ,

where B is a real constant N x N-matrix not necessarly satisfaying

6(B) CcC—:={zc€C:Rez<0}.
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Ornstein-Uhlenbeck semigroup in L? (RV)

The Ornstein-Uhlenbeck Co-semigroup (T (1)), is given by
Kolmogorov’s formula

T(t)f)(x S e (0 vy eBx—y)dy, t>0,xeRV
RN

\/ (47'C)N det @

t
Qt:/ e$BesB'ds,  t>o0.
0
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There exists a constant K¢ > 1 such that the following estimate holds

IT@F < wellfl" e[ T@)]l5, el (RY), tefo,6] (5)
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Logarithmic convexity estimate

Proposition

There exists a constant g > 1 such that the following estimate holds

IT@F < wellfl" e[ T@)]l5, el (RY), tefo,6] (5)

Idea of the Proof.
T(t)f = S(t) (g% 1),
where

1 _
g(y) = ———e i) t>0, yeRN

\/ (47t)Ndet Q
and
(S()f)(x)=1(e®x), teR, xeR"

S(Dfll = e 2 B)Ifll. = +tcR.



Logarithmic estimate

We give a logarithmic estimate for a class of initial data.

Theorem

There exist positive constants C and C; depending on (N,0,®, R)
such that, for all uy € g,

< —C
log (C1 [|ull (o,e;LZ(w)))

[| uol| 2w

for ||ull 41 (0,6:.2(w)) SUfficiently small.
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Time fractional equations

Let us consider the problem

{8?‘u(t) = Au(t), te(0,7),

u(0) = o, (©)

where A: D(A) C H — H is a densely defined linear operator such
that:

(i) Ais self-adjoint,

(i) Ais bounded above: there exists x > 0 such that
(Au,u) < k||u||? for all u € D(A),

(i) A has compact resolvent: there exists A > —x such that the
resolvent R(A, A) = (A — A)~" is compact.
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Logarithmic convexity

Theorem (Chorfi-Maniar-Yamamoto)

Let0 < o < 1. Let u be the solution to (6). Then there exists a
constant M > 1 such that

(Ol < Mu()"Tllu(T)||I7, 0<t<T. (7)

Moreover, if Kk = 0, then we can choose M = 1.
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|deas of the proof

e Use of the spectral representation

(=

()1 = Y (o, @n)? (Eat (—Aat™))*.

n=1

Ea7B(Z) :kgom, zeC.

e The functions t — (Eq1(—Ant*))? are completely monotone on
[0, T] for A, > 0.

e Any completely monotone function f : [0,00) — (0,0) is log-convex.
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|deas of the proof

e Use of the spectral representation

(=

()1 = Y (o, @n)? (Eat (—Aat™))*.

n=1

Ea7B(Z) :kgom, zeC.

e The functions t — (Eq1(—Ant*))? are completely monotone on
[0, T] for A, > 0.

e Any completely monotone function f : [0,00) — (0,0) is log-convex.

[4 S.E. Chorfi, L. Maniar, M. Yamamoto, The backward problem for
time fractional evolution equations, (2022) arXiv: 2211.16493.
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Thank you for your attention




