Logaritmic Convexity of Semigroups and Inverse Problems of Ornstein-Uhlenbeck equations

LAHCEN MANIAR

Laboratory of Mathematics and Populations Dynamic
Faculty of Sciences Semlalia, Cadi Ayyad University

Control Theory and Inverse Problems - CTIP 23, Monastir
May 08-10, 2023

Inverse initial data problems

We study the inverse problem of determining initial data of the well-posed linear system

$$
\left\{\begin{array}{l}
u^{\prime}(t)=A u(t), \quad t \in(0, \theta] \\
u(0)=u_{0} \in H
\end{array}\right.
$$

from the observations

$$
v(t)=\mathbf{C} u(t), \quad t \in(0, \theta] .
$$

$\mathbf{C} \in \mathcal{L}(D(A), Y)$ is an observation operator for $\left(\mathrm{e}^{t A}\right)_{t \geq 0}$.

Logarithmic stability

We aim to show a logarithmic stability estimate for a class of initial data:

$$
\left\|u_{0}\right\|_{H} \leq \frac{C}{\left(-\log \|\mathbf{C} u\|_{L^{2}(I, Y)}\right)^{\alpha}}
$$

for some $\alpha \in(0,1]$.

Logarithmic stability

We aim to show a logarithmic stability estimate for a class of initial data:

$$
\left\|u_{0}\right\|_{H} \leq \frac{C}{\left(-\log \|\mathbf{C} u\|_{L^{2}(I, Y)}\right)^{\alpha}}
$$

for some $\alpha \in(0,1]$.

General idea:
Observability inequality + Logarithmic convexity \Longrightarrow Logarithmic stability

Observability

- The observation operator \mathbf{C} is admissible if $\exists \kappa_{\theta}>0$:

$$
\forall u_{0} \in D(A), \quad \int_{0}^{\theta}\left\|\mathrm{Ce}^{t A} u_{0}\right\|_{Y}^{2} \mathrm{~d} t \leq \kappa_{\theta}^{2}\left\|u_{0}\right\|_{H}^{2}
$$

- The system is final state observable in time θ if $\exists \kappa_{\theta}>0$:

$$
\forall u_{0} \in D(A), \quad\left\|\mathrm{e}^{\theta A} u_{0}\right\|_{H}^{2} \leq \kappa_{\theta}^{2} \int_{0}^{\theta}\left\|\mathrm{Ce}^{t A} u_{0}\right\|_{Y}^{2} \mathrm{~d} t
$$

Logarithmic convexity

Consider the abstract parabolic system

$$
\left\{\begin{array}{l}
u^{\prime}(t)=A u(t), \quad t \in(0, \theta] \\
u(0)=u_{0} \in H
\end{array}\right.
$$

- $\theta>0$ is a final time for the system.
- $A: D(A) \subset H \rightarrow H$ is the generator C_{0}-semigroup $\left(\mathrm{e}^{t A}\right)_{t \geq 0}$.

Self-adjoint case

Lemma (Agmon-Nirenberg (1963))

Assume that A is self-adjoint. The solution u satisfies

$$
\|u(t)\| \leq\left\|u_{0}\right\|^{1-\frac{t}{\theta}}\|u(\theta)\|^{\frac{t}{\theta}}
$$

for all $0 \leq t \leq \theta$.

Key ideas: Differentiate $\log \|u(t)\|$ twice with respect to t and use symmetry and Cauchy-Schwartz inequality.

Self-adjoint case

Lemma (Agmon-Nirenberg (1963))

Assume that A is self-adjoint. The solution u satisfies

$$
\|u(t)\| \leq\left\|u_{0}\right\|^{1-\frac{t}{\theta}}\|u(\theta)\|^{\frac{t}{\theta}}
$$

for all $0 \leq t \leq \theta$.

Key ideas: Differentiate $\log \|u(t)\|$ twice with respect to t and use symmetry and Cauchy-Schwartz inequality.

Remark:

A function $f(t)$ that is $C^{2}[0, \infty)$ is log-convex if and only if the differential inequality

$$
\begin{equation*}
f(t) f^{\prime \prime}(t)-\left(f^{\prime}(t)\right)^{2} \geq 0 \tag{1}
\end{equation*}
$$

holds for all $t \geq 0$.

Proof.

Since $D\left(A^{2}\right)$ is dense in H, it suffices to consider $u_{0} \in D\left(A^{2}\right) \backslash\{0\}$. We have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|u(t)\|^{2}=2\left\langle u^{\prime}(t), u(t)\right\rangle=2\langle A u(t), u(t)\rangle
$$

and since A is self-adjoint,

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\|u(t)\|^{2}=4\|A u(t)\|^{2}
$$

It follows that
$\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\|u(t)\|^{2}\right)\|u(t)\|^{2}-\left(\frac{\mathrm{d}}{\mathrm{d} t}\|u(t)\|^{2}\right)^{2}=4\left(\|A u(t)\|^{2}\|u(t)\|^{2}-\langle A u(t), u(t)\rangle^{2}\right)$.
By Cauchy-Schwarz inequality, we obtain

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\|u(t)\|^{2}\right)\|u(t)\|^{2}-\left(\frac{\mathrm{d}}{\mathrm{~d} t}\|u(t)\|^{2}\right)^{2} \geq 0, \quad 0 \leq t \leq \theta \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\|u(t)\|^{2}\right)\|u(t)\|^{2}-\left(\frac{\mathrm{d}}{\mathrm{~d} t}\|u(t)\|^{2}\right)^{2}=\|u(t)\|^{4} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \log \left(\|u(t)\|^{2}\right) \geq 0 \tag{3}
\end{equation*}
$$

Therefore, the function $t \mapsto \log \|u(t)\|$ is convex on $[0, \theta]$. We obtain

$$
\|u(t)\| \leq\left\|u_{0}\right\|^{1-\frac{t}{\theta}}\|u(\theta)\|^{\frac{t}{\theta}}
$$

for all $0 \leq t \leq \theta$.

Remarks

- Logarithmic convexity

$$
\|u(t)\| \leq K\left\|u_{0}\right\|^{1-\frac{t}{\theta}}\|u(\theta)\|^{\frac{t}{\theta}}
$$

implies the backward uniqueness for the solution: if $u(\theta)=0$, then $u_{0}=0$.

Remarks

- Logarithmic convexity

$$
\|u(t)\| \leq K\left\|u_{0}\right\|^{1-\frac{t}{\theta}}\|u(\theta)\|^{\frac{t}{\theta}}
$$

implies the backward uniqueness for the solution: if $u(\theta)=0$, then $u_{0}=0$.

- Logarithmic convexity holds for group of isometries.

Remarks

- Logarithmic convexity

$$
\|u(t)\| \leq K\left\|u_{0}\right\|^{1-\frac{t}{\theta}}\|u(\theta)\|^{\frac{t}{\theta}}
$$

implies the backward uniqueness for the solution: if $u(\theta)=0$, then $u_{0}=0$.

- Logarithmic convexity holds for group of isometries.
- A well-posed problem need not satisfy logarithmic convexity:
$u_{t}+u_{x}=0, \quad u(t, 0)=0, \quad u(0, x)=u_{0}$, where $t \in(0, \theta), x \in(0,1)$.

Stability estimate

- 2001: M. Yamamoto, J. Zou, logarithmic stability for initial data in heat equation by logarithmic convexity and observability inequality.

Stability estimate

- 2001: M. Yamamoto, J. Zou, logarithmic stability for initial data in heat equation by logarithmic convexity and observability inequality.
- 2006: M. Cristofol, P. Gaitan, H. Ramoul, logarithmic stability for a coupled system using one observation and an extension of the logarithmic convexity.

Stability estimate

- 2001: M. Yamamoto, J. Zou, logarithmic stability for initial data in heat equation by logarithmic convexity and observability inequality.
- 2006: M. Cristofol, P. Gaitan, H. Ramoul, logarithmic stability for a coupled system using one observation and an extension of the logarithmic convexity.
- 2009: J. LI, M. Yamamoto, J. Zou, stability and numerical reconstruction of initial data for a general parabolic equation.

Stability estimate

- 2001: M. Yamamoto, J. Zou, logarithmic stability for initial data in heat equation by logarithmic convexity and observability inequality.
- 2006: M. Cristofol, P. Gaitan, H. Ramoul, logarithmic stability for a coupled system using one observation and an extension of the logarithmic convexity.
- 2009: J. LI, M. Yamamoto, J. Zou, stability and numerical reconstruction of initial data for a general parabolic equation.
- 2011: G. García, T. TAKAhashı, Logarithmic stability for abstract self-adjoint dissipative operators.

Stability estimate in the self-adjoint case

For fixed $\varepsilon \in(0,1)$ and $M>0$, consider

$$
\mathcal{I}_{\varepsilon, M}:=\left\{u_{0} \in D\left((-A)^{\varepsilon}\right):\left\|u_{0}\right\|_{D\left((-A)^{\varepsilon}\right)} \leq M\right\} .
$$

Theorem (García-Takahashi (2011))

We assume that $u_{0} \in \mathcal{I}_{\varepsilon, M}$ and the system is final state observable in time $\theta>0$. For $p \in\left(1, \frac{1}{1-\varepsilon}\right)$ and $s \in\left(0,1-\frac{1}{p}\right), \exists K>0$:

$$
\left\|u_{0}\right\|_{H} \leq K\left(-\log \|\mathbf{C} u\|_{L^{2}(0, \theta ; Y)}\right)^{-\frac{s}{p}}
$$

provided that $\|\mathbf{C} u\|_{L^{2}(0, \theta ; Y)}<1$.

Analytic Non necessarily self-adjoint semigroups

Let A be the generator of a bounded analytic semigroup $\left(\mathrm{e}^{t A}\right)_{t \geq 0}$ of angle $\psi \in\left(0, \frac{\pi}{2}\right]$. Set

$$
\Sigma_{\psi}:=\{z \in \mathbb{C} \backslash\{0\}:|\arg z|<\psi\}
$$

and let $K \geq 1$ and $\kappa \geq 0$:

$$
\left\|\mathrm{e}^{z A}\right\| \leq K \mathrm{e}^{\kappa \operatorname{Re} z} \quad \text { on } \bar{\Sigma}_{\psi}
$$

General logarithmic convexity

Theorem (Krein-Prozorovskaya (1960))

Let $u_{0} \in H$. The solution satisfies

$$
\|u(t)\| \leq K \mathrm{e}^{\mathrm{K}(t-\theta w(t))}\left\|u_{0}\right\|^{1-w(t)}\|u(\theta)\|^{w(t)}, \quad 0 \leq t \leq \theta
$$

where w is the harmonic function on the strip \mathcal{S}_{ψ}

The harmonic function

The harmonic function w is given by

$$
w(z)=\frac{\operatorname{Re}\left(h^{-1}(z)\right)}{\theta}, \quad h(z)=f \circ g(z), \quad g(z)=\theta \sin ^{2}\left(\frac{\pi z}{2 \theta}\right)
$$

and

$$
f(z)=\frac{\theta \sin \psi}{\pi} \int_{0}^{\frac{z}{\theta}} t^{\frac{\psi}{\pi}-1}(1-t)^{-\frac{\psi}{\pi}} \mathrm{d} t .
$$

The harmonic function

In case $\psi=\frac{\pi}{2}$,

$$
w(z)=\frac{t}{\theta}, \quad \forall z=t+i s \in \mathcal{S}_{\frac{\pi}{2}} .
$$

In case $\psi<\frac{\pi}{2}$, the harmonic function w is "not explicit" w.r.t. z. Here, we can to bound it from below:

Lemma

The harmonic function w satisfies the inequality

$$
w(t) \geq \frac{2}{\pi}\left(\frac{\psi}{\sin \psi}\right)^{\frac{\pi}{2 \psi}}\left(\frac{t}{\theta}\right)^{\frac{\pi}{2 \psi}}, \quad 0<t \leq \theta
$$

Logarithmic stability

Theorem (Ait Ben Hassi-Chorfi-Maniar (2023))

Assume that $u_{0} \in \mathcal{I}_{\varepsilon, M}$ and the system is final state observable in θ. For $p \in\left(1, \frac{1}{1-\varepsilon}\right)$ and $s \in\left(0,1-\frac{1}{p}\right), \exists K_{1}>0$:

$$
\left\|u_{0}\right\|_{H} \leq K_{1}\left(\frac{2 \psi \Gamma\left(\frac{2 \psi}{\pi}\right)}{\pi\left(-c_{\psi} p \log \|\mathbf{C}\|_{L^{2}(0, \theta ; Y)}\right) \frac{2 \psi}{\pi}}\right)^{\frac{s}{p}}
$$

where $c_{\psi}=\frac{2}{\pi}\left(\frac{\psi}{\sin \psi}\right)^{\frac{\pi}{2 \psi}}$, provided that $\|\mathbf{C} u\|_{L^{2}(0, \theta ; Y)}$ is sufficiently small.

Ornstein-Uhlenbeck equation (Analytic case)

Consider the Ornstein-Uhlenbeck equation

$$
\left\{\begin{array}{lll}
\partial_{t} y=\Delta y+B x \cdot \nabla y, & 0<t<\theta, & x \in \mathbb{R}^{N} \\
\left.y\right|_{t=0}=y_{0}, & x \in \mathbb{R}^{N}
\end{array}\right.
$$

B be a real constant $N \times N$-matrix.

KLIBANOV: logarithmic stability by Carleman estimates for bounded coefficients operators.

Ornstein-Uhlenbeck operator

- The operator $A:=\Delta+B x \cdot \nabla$, with its maximal domain, generates a (Ornstein-Uhlenbeck) C_{0}-semigroup on $L^{2}\left(\mathbb{R}^{N}\right)$.
- Spectral condition:

$$
\sigma(B) \subset \mathbb{C}-:=\{z \in \mathbb{C}: \operatorname{Re} z<0\}
$$

guarantees the existence of an invariant measure μ for the Ornstein-Uhlenbeck semigroup.

- The Ornstein-Uhlenbeck semigroup on $L_{\mu}^{2}:=L^{2}\left(\mathbb{R}^{N}, \mathrm{~d} \mu\right)$ is analytic.
- The analyticity angle ψ is such that $\psi<\frac{\pi}{2}$ in general.

References: R. Chill, E. Fašangová, G. Metafune, D. Pallara, A. Lunardi, ...

Observability inequality

Observation region: The observation operator: $\mathbf{C}=\mathbb{1}_{\omega}$
for an observation region $\omega \subset \mathbb{R}^{N}$:

$$
\exists \delta, r>0, \forall y \in \mathbb{R}^{N}, \exists y^{\prime} \in \omega, \quad B\left(y^{\prime}, r\right) \subset \omega \text { and }\left|y-y^{\prime}\right|<\delta .
$$

(L. Miller 2005, J. Le Rousseau \& I. Moyano 2016).

Observability inequality

Observation region: The observation operator: $\mathbf{C}=\mathbb{1}_{\omega}$
for an observation region $\omega \subset \mathbb{R}^{N}$:

$$
\exists \delta, r>0, \forall y \in \mathbb{R}^{N}, \exists y^{\prime} \in \omega, \quad B\left(y^{\prime}, r\right) \subset \omega \text { and }\left|y-y^{\prime}\right|<\delta .
$$

(L. Miller 2005, J. Le Rousseau \& I. Moyano 2016).

Example : open sets ω such that $\mathbb{R}^{N} \backslash \omega$ is bounded.

Observability inequality

Observation region: The observation operator: $\mathbf{C}=\mathbb{1}_{\omega}$
for an observation region $\omega \subset \mathbb{R}^{N}$:

$$
\exists \delta, r>0, \forall y \in \mathbb{R}^{N}, \exists y^{\prime} \in \omega, \quad B\left(y^{\prime}, r\right) \subset \omega \text { and }\left|y-y^{\prime}\right|<\delta .
$$

(L. Miller 2005, J. Le Rousseau \& I. Moyano 2016).

Example : open sets ω such that $\mathbb{R}^{N} \backslash \omega$ is bounded.

Observability inequality

Observation region: The observation operator: $\mathbf{C}=\mathbb{1}_{\boldsymbol{\omega}}$
for an observation region $\omega \subset \mathbb{R}^{N}$:

$$
\exists \delta, r>0, \forall y \in \mathbb{R}^{N}, \exists y^{\prime} \in \omega, \quad B\left(y^{\prime}, r\right) \subset \omega \text { and }\left|y-y^{\prime}\right|<\delta .
$$

(L. Miller 2005, J. Le Rousseau \& I. Moyano 2016).

Example : open sets ω such that $\mathbb{R}^{N} \backslash \omega$ is bounded.
Proposition (Beauchard-Pravda Strarov (2018))
$\exists \kappa_{\theta}=\kappa_{\theta}(\omega, \theta)>0$:

$$
\|y(\theta, \cdot)\|_{L_{\mu}^{2}}^{2} \leq \kappa_{\theta} \int_{0}^{\theta}\|y(t, \cdot)\|_{L_{\mu}^{2}(\omega)}^{2} \mathrm{~d} t
$$

Stability estimate

Proposition

Let $p \in\left(1, \frac{1}{1-\varepsilon}\right)$ and $s \in\left(0,1-\frac{1}{p}\right) \cdot \exists K_{1}>0$ such that, for all $\left\|y_{0}\right\|_{\mu_{\mu}^{2 c}} \leq M$, we have

$$
\left\|y_{0}\right\|_{L_{\mu}^{2}} \leq K_{1}\left(\frac{2 \psi \Gamma\left(\frac{2 \psi}{\pi}\right)}{\left.\pi\left(-c_{\psi} p \log \|y\|_{L^{2}\left(0, \theta ; L_{\mu}^{L}(\omega)\right)}\right)\right) \frac{2 \psi}{\pi}}\right)^{\frac{s}{p}},
$$

provided that $\|y\|_{L^{2}\left(0, \theta ; L_{\mu}^{2}(\omega)\right)}$ is sufficiently small.

Stability estimate

Proposition

> Let $p \in\left(1, \frac{1}{1-\varepsilon}\right)$ and $s \in\left(0,1-\frac{1}{p}\right) \cdot \exists K_{1}>0$ such that, for all $\left\|y_{0}\right\|_{H_{\mu}^{2 \varepsilon}} \leq M$, we have

$$
\left.\left\|y_{0}\right\|_{L_{\mu}^{2}} \leq K_{1}\left(\frac{2 \psi \Gamma\left(\frac{2 \psi}{\pi}\right)}{\pi\left(-c_{\psi} p \log \|y\|_{L^{2}\left(0, \theta ; L_{\mu}^{2}(\omega)\right)}\right)}\right)^{\frac{2 \psi}{\pi}}\right)^{\frac{s}{p}},
$$

provided that $\|y\|_{L^{2}\left(0, \theta ; L_{\mu}^{2}(\omega)\right)}$ is sufficiently small.
E. M. Ait Ben Hassi, S. E. Chorfi and L. Maniar, Inverse problems for general parabolic systems and application to Ornstein-Uhlenbeck equation, Discrete Contin. Dyn. Syst. - S (2023), doi: 10.3934/dcdss. 2022212.

Ornstein-Uhlenbeck equation in $L^{2}\left(\mathbb{R}^{N}\right)$ (non-analytic case)

Let $N \geq 1$ be an integer and let $\theta>0$ be a fixed time.
We consider the Ornstein-Uhlenbeck equation given by

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u+B x \cdot \nabla u, \quad 0<t<\theta, \quad x \in \mathbb{R}^{N}, \tag{4}\\
\left.u\right|_{t=0}=u_{0} \in L^{2}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where B is a real constant $N \times N$-matrix not necessarly satisfaying

$$
\sigma(B) \subset \mathbb{C}-:=\{z \in \mathbb{C}: \operatorname{Re} z<0\}
$$

Ornstein-Uhlenbeck semigroup in $L^{2}\left(\mathbb{R}^{N}\right)$

The Ornstein-Uhlenbeck C_{0}-semigroup $(T(t))_{t \geq 0}$ is given by
Kolmogorov's formula

$$
\begin{aligned}
T(0) & =l \\
(T(t) f)(x) & =\frac{1}{\sqrt{(4 \pi)^{N} \operatorname{det} Q_{t}}} \int_{\mathbb{R}^{N}} \mathrm{e}^{-\frac{1}{4}\left\langle Q_{t}^{-1} y, y\right\rangle} f\left(\mathrm{e}^{t B} x-y\right) \mathrm{d} y, \quad t>0, x \in \mathbb{R}^{N}
\end{aligned}
$$

$$
Q_{t}=\int_{0}^{t} \mathrm{e}^{s B} \mathrm{e}^{s B^{*}} \mathrm{~d} s, \quad t>0
$$

Ornstein-Uhlenbeck semigroup in $L^{2}\left(\mathbb{R}^{N}\right)$

The Ornstein-Uhlenbeck C_{0}-semigroup $(T(t))_{t \geq 0}$ is given by
Kolmogorov's formula

$$
\begin{gathered}
T(0)=I, \\
(T(t) f)(x)=\frac{1}{\sqrt{(4 \pi)^{N} \operatorname{det} Q_{t}}} \int_{\mathbb{R}^{N}} \mathrm{e}^{-\frac{1}{4}\left\langle Q_{t}^{-1} y, y\right\rangle} f\left(\mathrm{e}^{t B} x-y\right) \mathrm{d} y, \quad t>0, x \in \mathbb{R}^{N} \\
Q_{t}=\int_{0}^{t} \mathrm{e}^{s B} \mathrm{e}^{s B^{*}} \mathrm{~d} s, \quad t>0 .
\end{gathered}
$$

The C_{0}-semigroup $(T(t))_{t \geq 0}$ is not analytic in $L^{2}\left(\mathbb{R}^{N}\right)$.

Ornstein-Uhlenbeck semigroup in $L^{2}\left(\mathbb{R}^{N}\right)$

The Ornstein-Uhlenbeck C_{0}-semigroup $(T(t))_{t \geq 0}$ is given by
Kolmogorov's formula

$$
\begin{gathered}
T(0)=I, \\
(T(t) f)(x)=\frac{1}{\sqrt{(4 \pi)^{N} \operatorname{det} Q_{t}}} \int_{\mathbb{R}^{N}} \mathrm{e}^{-\frac{1}{4}\left\langle Q_{t}^{-1} y, y\right\rangle} f\left(\mathrm{e}^{t B} x-y\right) \mathrm{d} y, \quad t>0, x \in \mathbb{R}^{N} \\
Q_{t}=\int_{0}^{t} \mathrm{e}^{s B} \mathrm{e}^{s B^{*}} \mathrm{~d} s, \quad t>0 .
\end{gathered}
$$

The C_{0}-semigroup $(T(t))_{t \geq 0}$ is not analytic in $L^{2}\left(\mathbb{R}^{N}\right)$.

Logarithmic convexity estimate

Proposition

There exists a constant $\kappa_{\theta} \geq 1$ such that the following estimate holds

$$
\begin{equation*}
\|T(t) f\| \leq \kappa_{\theta}\|f\|^{1-\frac{t}{\theta}}\|T(\theta) f\|^{\frac{t}{\theta}}, \quad f \in L^{2}\left(\mathbb{R}^{N}\right), \quad t \in[0, \theta] \tag{5}
\end{equation*}
$$

Logarithmic convexity estimate

Proposition

There exists a constant $\kappa_{\theta} \geq 1$ such that the following estimate holds

$$
\begin{equation*}
\|T(t) f\| \leq \kappa_{\theta}\|f\|^{1-\frac{t}{\theta}}\|T(\theta) f\|^{\frac{t}{\theta}}, \quad f \in L^{2}\left(\mathbb{R}^{N}\right), \quad t \in[0, \theta] . \tag{5}
\end{equation*}
$$

Idea of the Proof.

$$
T(t) f=S(t)\left(g_{t} * f\right)
$$

where

$$
g_{t}(y)=\frac{1}{\sqrt{(4 \pi)^{N} \operatorname{det} Q_{t}}} \mathrm{e}^{-\frac{1}{4}\left\langle Q_{t}^{-1} y, y\right\rangle}, \quad t>0, \quad y \in \mathbb{R}^{N}
$$

and

$$
\begin{aligned}
(S(t) f)(x) & =f\left(\mathrm{e}^{t B} x\right), \quad t \in \mathbb{R}, \quad x \in \mathbb{R}^{N} \\
\|S(t) f\| & =\mathrm{e}^{-\frac{t}{2} \operatorname{tr}(B)}\|f\|,
\end{aligned}
$$

Logarithmic estimate

We give a logarithmic estimate for a class of initial data.

Theorem

There exist positive constants C and C_{1} depending on (N, θ, ω, R) such that, for all $u_{0} \in \mathcal{I}_{R}$,

$$
\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq \frac{-C}{\log \left(C_{1}\|u\|_{H^{1}\left(0, \theta ; L^{2}(\omega)\right)}\right)}
$$

for $\|u\|_{H^{1}\left(0, \theta ; L^{2}(\omega)\right)}$ sufficiently small.

Time fractional equations

Let us consider the problem

$$
\left\{\begin{array}{l}
\partial_{t}^{\alpha} u(t)=A u(t), \tag{6}\\
u(0)=u_{0}
\end{array}\right.
$$

where $A: D(A) \subset H \rightarrow H$ is a densely defined linear operator such that:
(i) A is self-adjoint,
(ii) A is bounded above: there exists $\kappa \geq 0$ such that $\langle A u, u\rangle \leq \kappa\|u\|^{2}$ for all $u \in D(A)$,
(iii) A has compact resolvent: there exists $\lambda>-\kappa$ such that the resolvent $R(\lambda, A)=(\lambda I-A)^{-1}$ is compact.

Fractional Derivative

$$
\partial_{t}^{\alpha} g(t)= \begin{cases}\frac{1}{\Gamma(1-\alpha)} \int_{0}^{t}(t-s)^{-\alpha} \frac{\mathrm{d}}{\mathrm{~d} s} g(s) \mathrm{d} s, & 0<\alpha<1 \\ \frac{\mathrm{~d}}{\mathrm{~d} t} g(t), & \alpha=1\end{cases}
$$

Logarithmic convexity

Theorem (Chorfi-Maniar-Yamamoto)

Let $0<\alpha \leq 1$. Let u be the solution to (6). Then there exists a constant $M \geq 1$ such that

$$
\begin{equation*}
\|u(t)\| \leq M\|u(0)\|^{1-\frac{t}{T}}\|u(T)\|^{\frac{t}{T}}, \quad 0 \leq t \leq T \tag{7}
\end{equation*}
$$

Moreover, if $\kappa=0$, then we can choose $M=1$.

Ideas of the proof

- Use of the spectral representation

$$
\begin{aligned}
\|u(t)\|^{2} & =\sum_{n=1}^{\infty}\left\langle u_{0}, \varphi_{n}\right\rangle^{2}\left(E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right)\right)^{2} . \\
E_{\alpha, \beta}(z) & =\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)}, \quad z \in \mathbb{C} .
\end{aligned}
$$

- The functions $t \mapsto\left(E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right)\right)^{2}$ are completely monotone on $[0, T]$ for $\lambda_{n} \geq 0$.
- Any completely monotone function $f:[0, \infty) \rightarrow(0, \infty)$ is log-convex.

Ideas of the proof

- Use of the spectral representation

$$
\begin{aligned}
\|u(t)\|^{2} & =\sum_{n=1}^{\infty}\left\langle u_{0}, \varphi_{n}\right\rangle^{2}\left(E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right)\right)^{2} . \\
E_{\alpha, \beta}(z) & =\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)}, \quad z \in \mathbb{C} .
\end{aligned}
$$

- The functions $t \mapsto\left(E_{\alpha, 1}\left(-\lambda_{n} t^{\alpha}\right)\right)^{2}$ are completely monotone on $[0, T]$ for $\lambda_{n} \geq 0$.
- Any completely monotone function $f:[0, \infty) \rightarrow(0, \infty)$ is log-convex.
S. E. Chorfi, L. Maniar, M. Yamamoto, The backward problem for time fractional evolution equations, (2022) arXiv: 2211.16493.

Thank you for your attention

