

Logaritmic Convexity of Semigroups and Inverse Problems of Ornstein-Uhlenbeck equations

LAHCEN MANIAR

Laboratory of Mathematics and Populations Dynamic Faculty of Sciences Semlalia, Cadi Ayyad University

Control Theory and Inverse Problems - CTIP 23, Monastir May 08- 10, 2023

<ロト
(ロト

We study the **inverse problem of determining initial data** of the well-posed linear system

$$\begin{cases} u'(t) = Au(t), & t \in (0, \theta], \\ u(0) = u_0 \in H, \end{cases}$$

from the observations

$$v(t) = \mathbf{C}u(t), \qquad t \in (0, \theta].$$

 $\mathbf{C} \in \mathcal{L}(D(A), Y)$ is an observation operator for $(e^{tA})_{t \geq 0}$.

(日) (문) (문) (문) (문) (문) (2/29)

We aim to show a **logarithmic stability** estimate for a class of initial data:

$$\|u_0\|_{H} \leq \frac{C}{(-\log \|\mathbf{C}u\|_{L^2(l,Y)})^{\alpha}},$$

for some $\alpha \in (0, 1]$.

We aim to show a **logarithmic stability** estimate for a class of initial data:

$$||u_0||_H \le \frac{C}{(-\log ||\mathbf{C}u||_{L^2(I,Y)})^{\alpha}}$$

for some $\alpha \in (0, 1]$.

General idea:

Observability inequality + Logarithmic convexity \implies Logarithmic stability

• The observation operator **C** is **admissible** if $\exists \kappa_{\theta} > 0$:

$$\forall u_0 \in D(A), \quad \int_0^\theta \left\| \mathbf{C} \mathrm{e}^{tA} u_0 \right\|_Y^2 \mathrm{d}t \leq \kappa_\theta^2 \left\| u_0 \right\|_H^2.$$

• The system is **final state observable** in time θ if $\exists \kappa_{\theta} > 0$:

$$\forall u_0 \in D(A), \quad \left\| e^{\theta A} u_0 \right\|_H^2 \leq \kappa_{\theta}^2 \int_0^{\theta} \left\| C e^{tA} u_0 \right\|_Y^2 dt.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣ぬ⊙

Consider the abstract parabolic system

$$\begin{cases} u'(t) = Au(t), & t \in (0, \theta], \\ u(0) = u_0 \in H. \end{cases}$$

- $\theta > 0$ is a final time for the system.
- $A: D(A) \subset H \to H$ is the generator C_0 -semigroup $(e^{tA})_{t>0}$.

<ロト
(日)

Self-adjoint case

Lemma (Agmon-Nirenberg (1963))

Assume that A is self-adjoint. The solution u satisfies

```
\|u(t)\| \leq \|u_0\|^{1-\frac{t}{\theta}}\|u(\theta)\|^{\frac{t}{\theta}}
```

for all $0 \le t \le \theta$.

Key ideas: Differentiate $\log ||u(t)||$ twice with respect to *t* and use symmetry and Cauchy-Schwartz inequality.

Self-adjoint case

Lemma (Agmon-Nirenberg (1963))

Assume that A is self-adjoint. The solution u satisfies

```
\|u(t)\| \leq \|u_0\|^{1-\frac{t}{\theta}}\|u(\theta)\|^{\frac{t}{\theta}}
```

for all $0 \le t \le \theta$.

Key ideas: Differentiate $\log ||u(t)||$ twice with respect to *t* and use symmetry and Cauchy-Schwartz inequality.

Remark:

A function f(t) that is $C^2[0,\infty)$ is log-convex if and only if the differential inequality

$$f(t)f''(t) - (f'(t))^2 \ge 0 \tag{1}$$

holds for all $t \ge 0$.

Proof.

Since $D(A^2)$ is dense in H, it suffices to consider $u_0 \in D(A^2) \setminus \{0\}$. We have

$$\frac{\mathrm{d}}{\mathrm{d}t}\|u(t)\|^2 = 2\langle u'(t), u(t)\rangle = 2\langle Au(t), u(t)\rangle,$$

and since A is self-adjoint,

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \|u(t)\|^2 = 4 \|Au(t)\|^2.$$

It follows that

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2}\|u(t)\|^2\right)\|u(t)\|^2 - \left(\frac{\mathrm{d}}{\mathrm{d}t}\|u(t)\|^2\right)^2 = 4(\|\mathsf{A}u(t)\|^2\|u(t)\|^2 - \langle \mathsf{A}u(t), u(t)\rangle^2).$$

By Cauchy-Schwarz inequality, we obtain

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} \|u(t)\|^2\right) \|u(t)\|^2 - \left(\frac{\mathrm{d}}{\mathrm{d}t} \|u(t)\|^2\right)^2 \ge 0, \qquad 0 \le t \le \theta.$$
 (2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − ∽へ⊙ - -

Then

$$\left(\frac{d^2}{dt^2} \|u(t)\|^2\right) \|u(t)\|^2 - \left(\frac{d}{dt} \|u(t)\|^2\right)^2 = \|u(t)\|^4 \frac{d^2}{dt^2} \log\left(\|u(t)\|^2\right) \ge 0.$$
(3)
Therefore, the function $t \mapsto \log \|u(t)\|$ is convex on $[0, \theta]$. We obtain

$$\|u(t)\| \leq \|u_0\|^{1-\frac{t}{\theta}}\|u(\theta)\|^{\frac{t}{\theta}}$$

for all $0 \le t \le \theta$.

Remarks

Logarithmic convexity

$$\|u(t)\| \leq K \|u_0\|^{1-\frac{t}{\theta}} \|u(\theta)\|^{\frac{t}{\theta}}$$

implies the **backward uniqueness** for the solution: if $u(\theta) = 0$, then $u_0 = 0$.

Remarks

Logarithmic convexity

$$\|u(t)\| \leq K \|u_0\|^{1-\frac{t}{\theta}} \|u(\theta)\|^{\frac{t}{\theta}}$$

implies the **backward uniqueness** for the solution: if $u(\theta) = 0$, then $u_0 = 0$.

• Logarithmic convexity holds for group of isometries.

Remarks

Logarithmic convexity

$$\|u(t)\| \leq K \|u_0\|^{1-\frac{t}{\theta}} \|u(\theta)\|^{\frac{t}{\theta}}$$

implies the **backward uniqueness** for the solution: if $u(\theta) = 0$, then $u_0 = 0$.

- Logarithmic convexity holds for group of isometries.
- A well-posed problem need not satisfy logarithmic convexity:

$$u_t + u_x = 0, \quad u(t,0) = 0, \quad u(0,x) = u_0,$$
 where $t \in (0,\theta), x \in (0,1).$

• 2001: M. YAMAMOTO, J. ZOU, logarithmic stability for initial data in heat equation by logarithmic convexity and observability inequality.

- 2001: M. YAMAMOTO, J. ZOU, logarithmic stability for initial data in heat equation by logarithmic convexity and observability inequality.
- 2006: M. CRISTOFOL, P. GAITAN, H. RAMOUL, logarithmic stability for a **coupled system** using **one observation** and **an extension** of the logarithmic convexity.

- 2001: M. YAMAMOTO, J. ZOU, logarithmic stability for initial data in heat equation by logarithmic convexity and observability inequality.
- 2006: M. CRISTOFOL, P. GAITAN, H. RAMOUL, logarithmic stability for a **coupled system** using **one observation** and **an extension** of the logarithmic convexity.
- 2009: J. LI, M. YAMAMOTO, J. ZOU, stability and numerical reconstruction of initial data for a general parabolic equation.

- 2001: M. YAMAMOTO, J. ZOU, logarithmic stability for initial data in heat equation by logarithmic convexity and observability inequality.
- 2006: M. CRISTOFOL, P. GAITAN, H. RAMOUL, logarithmic stability for a **coupled system** using **one observation** and **an extension** of the logarithmic convexity.
- 2009: J. LI, M. YAMAMOTO, J. ZOU, stability and numerical reconstruction of initial data for a general parabolic equation.
- 2011: G. GARCÍA, T. TAKAHASHI, Logarithmic stability for abstract **self-adjoint** dissipative operators.

Stability estimate in the self-adjoint case

For fixed $\epsilon \in (0, 1)$ and M > 0, consider

$$\mathcal{I}_{\varepsilon,M} := \left\{ u_0 \in D((-A)^{\varepsilon}) : \|u_0\|_{D((-A)^{\varepsilon})} \leq M \right\}.$$

Theorem (García-Takahashi (2011))

We assume that $u_0 \in \mathcal{I}_{\varepsilon,M}$ and the system is final state observable in time $\theta > 0$. For $p \in \left(1, \frac{1}{1-\varepsilon}\right)$ and $s \in \left(0, 1-\frac{1}{p}\right)$, $\exists K > 0$: $\|u_0\|_H \leq K \left(-\log \|\mathbf{C}u\|_{L^2(0,\theta;Y)}\right)^{-\frac{s}{p}}$, provided that $\|\mathbf{C}u\|_{L^2(0,\theta;Y)} < 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let *A* be the generator of a bounded **analytic semigroup** $(e^{tA})_{t\geq 0}$ of angle $\psi \in \left(0, \frac{\pi}{2}\right]$. Set

$$\Sigma_{\boldsymbol{\Psi}} := \{ z \in \mathbb{C} \setminus \{ \mathbf{0} \} \colon |\arg z| < \boldsymbol{\psi} \},$$

and let $K \ge 1$ and $\kappa \ge 0$:

$$\|e^{zA}\| \leq K e^{\kappa \operatorname{Re} z}$$
 on $\overline{\Sigma}_{\psi}$.

General logarithmic convexity

Theorem (Krein-Prozorovskaya (1960))

Let $u_0 \in H$. The solution satisfies

$$\|u(t)\| \leq K e^{\kappa(t-\theta w(t))} \|u_0\|^{1-w(t)} \|u(\theta)\|^{w(t)}, \qquad 0 \leq t \leq \theta$$

where w is the harmonic function on the strip \mathcal{S}_{Ψ}

The harmonic function w is given by

$$w(z) = rac{\operatorname{\mathsf{Re}}(h^{-1}(z))}{\theta}, \quad h(z) = f \circ g(z), \quad g(z) = \theta \sin^2\left(\frac{\pi z}{2\theta}\right)$$

and

$$f(z) = \frac{\theta \sin \psi}{\pi} \int_0^{\frac{z}{\theta}} t^{\frac{\psi}{\pi}-1} (1-t)^{-\frac{\psi}{\pi}} dt$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The harmonic function

In case
$$\psi = rac{\pi}{2},$$

 $w(z) = rac{t}{ heta}, \quad \forall z = t + is \in \mathcal{S}_{rac{\pi}{2}}.$

In case $\psi < \frac{\pi}{2}$, the harmonic function *w* is "not explicit" w.r.t. *z*. Here, we can to bound it **from below**:

Lemma

The harmonic function w satisfies the inequality

$$w(t) \geq rac{2}{\pi} \left(rac{\Psi}{\sin \Psi}
ight)^{rac{\pi}{2\Psi}} \left(rac{t}{ heta}
ight)^{rac{\pi}{2\Psi}}, \qquad 0 < t \leq heta.$$

<ロト < 回 > < 三 > < 三 > < 三 > の < ○ 15/2

Theorem (Ait Ben Hassi-Chorfi-Maniar (2023))

Assume that $u_0 \in \mathcal{I}_{\epsilon,M}$ and the system is final state observable in θ . For $p \in (1, \frac{1}{1-\epsilon})$ and $s \in (0, 1-\frac{1}{p})$, $\exists K_1 > 0$:

$$\|u_0\|_{H} \leq K_1 \left(\frac{2\Psi\left(\frac{2\Psi}{\pi}\right)}{\pi\left(-c_{\Psi}p\log\|\mathbf{C}u\|_{L^2(0,\theta;Y)}\right)\frac{2\Psi}{\pi}}\right)^{\frac{p}{p}}$$

where $c_{\psi} = \frac{2}{\pi} \left(\frac{\psi}{\sin \psi} \right)^{\frac{\pi}{2\psi}}$, provided that $\|\mathbf{C}u\|_{L^2(0,\theta;Y)}$ is sufficiently small.

<ロ>
<日>
<日>
<日>
<日>
<日>
<16/29</p>

Consider the Ornstein-Uhlenbeck equation

$$\begin{cases} \partial_t y = \Delta y + \mathbf{B} x \cdot \nabla y, & 0 < t < \theta, \quad x \in \mathbb{R}^N, \\ y|_{t=0} = y_0, & x \in \mathbb{R}^N. \end{cases}$$

B be a real constant $N \times N$ -matrix.

KLIBANOV: logarithmic stability by **Carleman estimates** for **bounded coefficients** operators.

Ornstein–Uhlenbeck operator

- The operator A := Δ + Bx · ∇, with its maximal domain, generates a (Ornstein-Uhlenbeck) C₀-semigroup on L² (ℝ^N).
- Spectral condition:

$$\sigma(B) \subset \mathbb{C} - := \{z \in \mathbb{C} : \operatorname{Re} z < 0\}$$

guarantees the existence of an **invariant measure** μ for the Ornstein-Uhlenbeck semigroup.

- The Ornstein-Uhlenbeck semigroup on L²_µ := L² (ℝ^N, dµ) is analytic.
- The analyticity angle ψ is such that $\psi < \frac{\pi}{2}$ in general.

References: R. Chill, E. Fašangová, G. Metafune, D. Pallara, A. Lunardi, ...

Observation region: The observation operator: $\textbf{C} = \mathbb{1}_{\omega}$

for an observation region $\omega \subset \mathbb{R}^N$:

$$\exists \delta, r > 0, \forall y \in \mathbb{R}^{N}, \exists y' \in \omega, \quad B\left(y', r\right) \subset \omega \text{ and } \left|y - y'\right| < \delta.$$

(L. Miller 2005, J. Le Rousseau & I. Moyano 2016).

Observation region: The observation operator: $\textbf{C} = \mathbb{1}_{\omega}$

for an observation region $\omega \subset \mathbb{R}^N$:

$$\exists \delta, r > 0, \forall y \in \mathbb{R}^N, \exists y' \in \omega, \quad B(y', r) \subset \omega \text{ and } |y - y'| < \delta.$$

(L. Miller 2005, J. Le Rousseau & I. Moyano 2016).

Example : open sets ω such that $\mathbb{R}^N \setminus \omega$ is bounded.

Observation region: The observation operator: $\textbf{C} = \mathbb{1}_{\omega}$

for an observation region $\omega \subset \mathbb{R}^N$:

$$\exists \delta, r > 0, \forall y \in \mathbb{R}^N, \exists y' \in \omega, \quad B(y', r) \subset \omega \text{ and } |y - y'| < \delta.$$

(L. Miller 2005, J. Le Rousseau & I. Moyano 2016).

Example : open sets ω such that $\mathbb{R}^N \setminus \omega$ is bounded.

Observation region: The observation operator: $\textbf{C} = \mathbb{1}_{\omega}$

for an observation region $\omega \subset \mathbb{R}^N$:

$$\exists \delta, r > 0, \forall y \in \mathbb{R}^{N}, \exists y' \in \omega, \quad B\left(y', r\right) \subset \omega \text{ and } \left|y - y'\right| < \delta.$$

(L. Miller 2005, J. Le Rousseau & I. Moyano 2016).

Example : open sets ω such that $\mathbb{R}^N \setminus \omega$ is bounded.

Proposition (Beauchard-Pravda Strarov (2018)) $\exists \kappa_{\theta} = \kappa_{\theta}(\omega, \theta) > 0:$

$$\|\mathbf{y}(\mathbf{\theta},\cdot)\|_{L^2_{\mu}}^2 \leq \kappa_{\mathbf{\theta}} \int_0^{\mathbf{\theta}} \|\mathbf{y}(t,\cdot)\|_{L^2_{\mu}(\mathbf{\omega})}^2 \mathrm{d}t.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

Let
$$p \in \left(1, \frac{1}{1-\epsilon}\right)$$
 and $s \in \left(0, 1-\frac{1}{p}\right)$. $\exists K_1 > 0$ such that, for all $\|y_0\|_{H^{2\epsilon}_u} \leq M$, we have

$$\|y_0\|_{L^2_{\mu}} \leq \kappa_1 \left(\frac{2\psi}{\pi} \left(\frac{2\psi}{\pi} \right)}{\pi \left(-c_{\psi} \rho \log \|y\|_{L^2\left(0,\theta; L^2_{\mu}(\omega)\right)} \right) \frac{2\psi}{\pi}} \right)^{\frac{2}{p}}$$

provided that $\|y\|_{L^2(0,\theta;L^2_{\mu}(\omega))}$ is sufficiently small.

<ロ>
<日>
<日>
<日>
<日>
<日>
<日>
<10</p>
<10</p

Proposition

Let
$$p \in \left(1, \frac{1}{1-\epsilon}\right)$$
 and $s \in \left(0, 1-\frac{1}{p}\right)$. $\exists K_1 > 0$ such that, for all $\|y_0\|_{H^{2\epsilon}_u} \leq M$, we have

$$\|y_0\|_{L^2_{\mu}} \leq K_1 \left(\frac{2\psi \Gamma\left(\frac{2\psi}{\pi}\right)}{\pi \left(-c_{\psi}\rho \log \|y\|_{L^2\left(0,\theta; L^2_{\mu}(\omega)\right)} \right) \frac{2\psi}{\pi}} \right)^{\frac{3}{p}}$$

provided that $\|y\|_{L^2(0,\theta;L^2_{\mu}(\omega))}$ is sufficiently small.

E. M. Ait Ben Hassi, S. E. Chorfi and L. Maniar, Inverse problems for general parabolic systems and application to Ornstein-Uhlenbeck equation, *Discrete Contin. Dyn. Syst. - S* (2023), doi: 10.3934/dcdss.2022212. Let $N \ge 1$ be an integer and let $\theta > 0$ be a fixed time.

We consider the Ornstein-Uhlenbeck equation given by

$$\begin{cases} \partial_t u = \Delta u + Bx \cdot \nabla u, & 0 < t < \theta, \quad x \in \mathbb{R}^N, \\ u|_{t=0} = u_0 \in L^2(\mathbb{R}^N), \end{cases}$$
(4)

where B is a real constant $N \times N$ -matrix **not necessarily** satisfaying

$$\sigma(B) \subset \mathbb{C} - := \{z \in \mathbb{C} : \operatorname{Re} z < 0\}.$$

Ornstein-Uhlenbeck semigroup in $L^2(\mathbb{R}^N)$

The Ornstein-Uhlenbeck C_0 -semigroup $(T(t))_{t\geq 0}$ is given by Kolmogorov's formula

$$T(0) = I,$$

$$(T(t)f)(x) = \frac{1}{\sqrt{(4\pi)^N \det Q_t}} \int_{\mathbb{R}^N} e^{-\frac{1}{4} \langle Q_t^{-1} y, y \rangle} f\left(e^{tB} x - y\right) dy, \quad t > 0, x \in \mathbb{R}^N$$

$$Q_t = \int_0^t \mathrm{e}^{sB} \,\mathrm{e}^{sB^*} \,\mathrm{d}s, \qquad t > 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − つんで

Ornstein-Uhlenbeck semigroup in $L^2(\mathbb{R}^N)$

The Ornstein-Uhlenbeck C_0 -semigroup $(T(t))_{t\geq 0}$ is given by Kolmogorov's formula

$$T(0) = I,$$

$$(T(t)f)(x) = \frac{1}{\sqrt{(4\pi)^N \det Q_t}} \int_{\mathbb{R}^N} e^{-\frac{1}{4} \langle Q_t^{-1} y, y \rangle} f\left(e^{tB} x - y\right) dy, \quad t > 0, x \in \mathbb{R}^N$$

$$Q_t = \int_0^t \mathrm{e}^{sB} \,\mathrm{e}^{sB^*} \,\mathrm{d}s, \qquad t > 0.$$

The C_0 -semigroup $(T(t))_{t\geq 0}$ is **not analytic** in $L^2(\mathbb{R}^N)$.

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

Ornstein-Uhlenbeck semigroup in $L^2(\mathbb{R}^N)$

The Ornstein-Uhlenbeck C_0 -semigroup $(T(t))_{t\geq 0}$ is given by Kolmogorov's formula

$$T(0) = I,$$

$$(T(t)f)(x) = \frac{1}{\sqrt{(4\pi)^N \det Q_t}} \int_{\mathbb{R}^N} e^{-\frac{1}{4} \langle Q_t^{-1} y, y \rangle} f\left(e^{tB} x - y\right) dy, \quad t > 0, x \in \mathbb{R}^N$$

$$Q_t = \int_0^t \mathrm{e}^{sB} \,\mathrm{e}^{sB^*} \,\mathrm{d}s, \qquad t > 0.$$

The C_0 -semigroup $(T(t))_{t\geq 0}$ is **not analytic** in $L^2(\mathbb{R}^N)$.

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

Logarithmic convexity estimate

Proposition

There exists a constant $\kappa_{\theta} \geq 1$ such that the following estimate holds

 $\|T(t)f\| \leq \kappa_{\theta} \|f\|^{1-\frac{t}{\theta}} \|T(\theta)f\|^{\frac{t}{\theta}}, \qquad f \in L^{2}\left(\mathbb{R}^{N}\right), \qquad t \in [0,\theta].$ (5)

Logarithmic convexity estimate

Proposition

There exists a constant $\kappa_{\theta} \geq 1$ such that the following estimate holds

$$\|T(t)f\| \leq \kappa_{\theta} \|f\|^{1-\frac{t}{\theta}} \|T(\theta)f\|^{\frac{t}{\theta}}, \qquad f \in L^{2}\left(\mathbb{R}^{N}\right), \qquad t \in [0,\theta].$$
(5)

Idea of the Proof.

$$T(t)f=S(t)(g_t*f),$$

where

$$g_t(y) = rac{1}{\sqrt{(4\pi)^N \det Q_t}} e^{-rac{1}{4} \langle Q_t^{-1} y, y \rangle}, \quad t > 0, \quad y \in \mathbb{R}^N.$$

and

$$(S(t)f)(x) = f(e^{tB}x), \quad t \in \mathbb{R}, \quad x \in \mathbb{R}^{N}$$
$$||S(t)f|| = e^{-\frac{t}{2}\operatorname{tr}(B)}||f||_{L^{2}} \leq \mathcal{T} \in \mathbb{R}, \quad z \to \infty$$

We give a logarithmic estimate for a class of initial data.

Theorem

There exist positive constants C and C₁ depending on (N, θ, ω, R) such that, for all $u_0 \in \mathcal{I}_R$,

$$\|u_0\|_{L^2(\mathbb{R}^N)} \leq \frac{-C}{\log(C_1\|u\|_{H^1(0,0;L^2(\omega))})}$$

for $||u||_{H^1(0,\theta;L^2(\omega))}$ sufficiently small.

Time fractional equations

Let us consider the problem

$$\begin{cases} \partial_t^{\alpha} u(t) = Au(t), & t \in (0, T), \\ u(0) = u_0, \end{cases}$$
(6)

where $A : D(A) \subset H \rightarrow H$ is a densely defined linear operator such that:

- (i) A is self-adjoint,
- (ii) A is bounded above: there exists $\kappa \ge 0$ such that $\langle Au, u \rangle \le \kappa ||u||^2$ for all $u \in D(A)$,
- (iii) A has compact resolvent: there exists $\lambda > -\kappa$ such that the resolvent $R(\lambda, A) = (\lambda I A)^{-1}$ is compact.

Fractional Derivative

$$\partial_t^{lpha} g(t) = egin{cases} rac{1}{\Gamma(1-lpha)} \int_0^t (t-s)^{-lpha} rac{\mathrm{d}}{\mathrm{d}s} g(s) \, \mathrm{d}s, & 0$$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

Theorem (Chorfi-Maniar-Yamamoto)

Let $0 < \alpha \le 1$. Let *u* be the solution to (6). Then there exists a constant $M \ge 1$ such that

$$\|u(t)\| \le M \|u(0)\|^{1-\frac{t}{T}} \|u(T)\|^{\frac{t}{T}}, \qquad 0 \le t \le T.$$
 (7)

Moreover, if $\kappa = 0$, then we can choose M = 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ideas of the proof

• Use of the spectral representation

$$\|u(t)\|^{2} = \sum_{n=1}^{\infty} \langle u_{0}, \varphi_{n} \rangle^{2} \left(\mathcal{E}_{\alpha,1}(-\lambda_{n}t^{\alpha}) \right)^{2}.$$

$${\sf E}_{lpha,eta}(z) = \sum_{k=0}^\infty rac{z^k}{\Gamma(lpha k+eta)}, \qquad z\in \mathbb{C}.$$

- The functions $t \mapsto (E_{\alpha,1}(-\lambda_n t^{\alpha}))^2$ are completely monotone on [0, T] for $\lambda_n \ge 0$.
- Any completely monotone function $f: [0,\infty) \to (0,\infty)$ is log-convex.

Ideas of the proof

• Use of the spectral representation

$$\|u(t)\|^{2} = \sum_{n=1}^{\infty} \langle u_{0}, \varphi_{n} \rangle^{2} \left(\mathcal{E}_{\alpha,1}(-\lambda_{n}t^{\alpha}) \right)^{2}.$$

$${\sf E}_{lpha,eta}(z) = \sum_{k=0}^\infty rac{z^k}{\Gamma(lpha k+eta)}, \qquad z\in \mathbb{C}.$$

• The functions $t \mapsto (E_{\alpha,1}(-\lambda_n t^{\alpha}))^2$ are completely monotone on [0, T] for $\lambda_n \ge 0$.

- Any completely monotone function $f: [0,\infty) \to (0,\infty)$ is log-convex.
- S. E. Chorfi, L. Maniar, M. Yamamoto, The backward problem for time fractional evolution equations, (2022) arXiv: 2211.16493.

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Thank you for your attention

▲□▶▲□▶▲□▶▲□▶ □ のへで