- 1
- Introduction
- 2 Admissibility
- 3 Compatibility condition
- 4 Joint Admessibility
- Weiss-Staffans perturbation operators
- Well posedness of system (1.1) and (1.2)
- 7 Stability and observability results
- First example: Pointwise stabilization of the string I
- Second example: Pointwise stabilization of the string II

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction

- Admissibility
- Compatibility condition
- 4 Joint Admessibility
- 5 Weiss-Staffans perturbation operators
- Well posedness of system (1.1) and (1.2)
- 7 Stability and observability results
- First example: Pointwise stabilization of the string I
- Second example: Pointwise stabilization of the string II

(日)

- Introduction
- Admissibility
- Compatibility condition
- Joint Admessibility
- 5 Weiss-Staffans perturbation operators
- Well posedness of system (1.1) and (1.2)
- 7 Stability and observability results
- First example: Pointwise stabilization of the string I
- Second example: Pointwise stabilization of the string II

< □ > < □ > < □ > < □ > < □ >

Introduction Admissibility Compatibility condition Joint Admessibility

▲御 ▶ ▲ 臣 ▶

- Introduction
- 2 Admissibility
- Compatibility condition
 - Joint Admessibility
- Weiss-Staffans perturbation operators
- Well posedness of system (1.1) and (1.2)
- Stability and observability results
- First example: Pointwise stabilization of the string I
- Second example: Pointwise stabilization of the string II

- Introduction
- Admissibility
- Compatibility condition
 - Joint Admessibility
- Weiss-Staffans perturbation operators
- Well posedness of system (1.1) and (1.2)
- Stability and observability results
- First example: Pointwise stabilization of the string I
- Second example: Pointwise stabilization of the string II

< A > < 3

- Introduction
- Admissibility
- Compatibility condition
- Joint Admessibility
- Weiss-Staffans perturbation operators
- Well posedness of system (1.1) and (1.2)
- Stability and observability results
- First example: Pointwise stabilization of the string I
- Second example: Pointwise stabilization of the string II

- Introduction
- Admissibility
- Compatibility condition
 - Joint Admessibility
- Weiss-Staffans perturbation operators
- Well posedness of system (1.1) and (1.2)
- Stability and observability results
- First example: Pointwise stabilization of the string I
- Second example: Pointwise stabilization of the string II

- Introduction
- Admissibility
- Compatibility condition
 - Joint Admessibility
- Weiss-Staffans perturbation operators
- Well posedness of system (1.1) and (1.2)
- Stability and observability results
- First example: Pointwise stabilization of the string I
- Second example: Pointwise stabilization of the string II

Introduction

Admissibility Compatibility condition Joint Admessibility Weiss-Staffans perturbation operators Well posedness of system (1.1) and (1.2) Stability and observability results First example: Pointwise stabilization of the string I Second example: Pointwise stabilization of the string I

Definitions and Notations

Consider the infinite-dimensional observation system

$$\begin{cases} \dot{z}(t) = A(t)z(t), & t \ge 0, \\ z(0) = x \in H \end{cases}$$
(1)

where

$$A(t) = A^0 - \alpha(t)BB^*, \quad t \ge 0.$$
(2)

- α : ℝ₊ → ℝ is a positive, bounded and continuously differentiable function.
- A₀ : D(A⁰) ⊂ H → H is a skew-adjoint operator and H is a Hilbert space endowed with the norm || ||.

- The control operator B ∈ L(U, H₋₁), which may be unbounded (i.e. not in L(U, H)), is acting on some Hilbert space U.
- Let H_1 be the Banach space $D(A^0)$ endowed with it's graph norm and $H_{-1} := D(A^0)'$ be the dual space of $D(A^0)$ with respect to the pivot space H.
- We have the inclusions H₁ ⊂ H ⊂ H₋₁ with continuous embeddings.
- According to Stone's theorem , the operator A⁰ generates a unitary group (S(t))_{t∈ℝ}.
- Then, the strongly continuous group (S(t))_{t∈ℝ} can be extended to a strongly continuous unitary group S₋₁(t) on H₋₁ whose generator is the extension A₋₁ ∈ L(H, H₋₁) of A⁰ ∈ L(H₁, H).

Definition 1

The operator $B \in \mathcal{L}(U, H_{-1})$ is called an admissible control operator (for *S*) if there exists $t_0 > 0$ such that

$$\int_0^{t_0} S_{-1}(t_0-s) Bu(s) ds \in H, \quad orall u \in L^2(0,t_0;U).$$

(日) (四) (三) (三)

Introduction	
Admissibility	
Compatibility condition	
Joint Admessibility	
Weiss-Staffans perturbation operators	
Well posedness of system (1.1) and (1.2)	
Stability and observability results	
First example: Pointwise stabilization of the string I	
Second example: Pointwise stabilization of the string II	

Proposition 1

Let $B \in \mathcal{L}(U, H_{-1})$ be admissible control operator. For t > 0, we define $\mathcal{B}_t \in \mathcal{L}(L^2(\mathbb{R}_+, U), H_{-1})$ by

$$\mathcal{B}_t u = \int_0^t S_{-1}(t-r) B u(r) dr.$$

Then, for every $t \ge 0$ we have

$$\mathcal{B}_t \in \mathcal{L}(L^2(\mathbb{R}_+, U), H).$$

Definition 2

Let $C \in \mathcal{L}(H_1, U)$. For $t \ge 0$, we define $C_t \in \mathcal{L}(H_1, L^2([0, t], U))$ by

$$(\mathcal{C}_t x)(s) = CS(s)x, \quad \forall x \in D(A_0), \quad \forall s \in [0, t].$$
 (3)

The operator $C \in \mathcal{L}(H_1, U)$ is called an admissible observation operator (for *S*) if for some $t_0 > 0$, C_{t_0} has a continuous extension to *H*. Equivalently, $C \in \mathcal{L}(H_1, U)$ is an admissible observation operator if for some $t_0 > 0$ there exists $M_{t_0} > 0$ such that

$$\int_0^{t_0} \left\| \mathcal{CS}(t)x
ight\|_U^2 dt \leq M_{t_0} \|x\|_H^2, \quad orall x \in \mathcal{D}(\mathcal{A}_0).$$

・ 「「」 ト ・ 」 ト ・

(4)

Introduction
Admissibility
Compatibility condition
Joint Admessibility
Weiss-Staffans perturbation operators
Well posedness of system (1.1) and (1.2)
Stability and observability results
First example: Pointwise stabilization of the string I
Second example: Pointwise stabilization of the string II

Proposition 2

If $C \in \mathcal{L}(H_1, U)$ is admissible. For $t \ge 0$, define

$$(\mathcal{C}_t x)(s) = CS(s)x, \quad \forall x \in D(A_0), \quad \forall s \in [0, t].$$

Then, for every $t \ge 0$ we have

 $C_t \in \mathcal{L}(H, L^2([0, t], U)).$

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Lemma 1

Suppose that $B \in \mathcal{L}(U, H_{-1})$. Then, *B* is an admissible control operator (for *S*), if and only if, B^* is an admissible observation operator (for $S^* = -S$).

イロト イヨト イヨト イヨ

Definition 3

The system (A_0, B, C) , with $(B, C) \in \mathcal{L}(U, H_{-1}) \times \mathcal{L}(H_1, U)$ is called compatible if for some $\lambda \in \rho(A^0)$ we have

$$Rig((\lambda-A_{-1})^{-1}Big)\subset H_1.$$

(5

Remark

It is obvious that if the inclusion (5) holds for some $\lambda \in \rho(A^0)$, then it holds for all $\lambda \in \rho(A^0)$ by the resolvent identity. Moreover, by the closed graph theorem, we have

$$C(\lambda - A_{-1})^{-1}B \in \mathcal{L}(U), \ \forall \lambda \in \rho(A^0).$$

 If not stated otherwise, in the sequel we always assume that the compatibility condition holds.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition 4

The pair $(B, C) \in \mathcal{L}(U, H_{-1}) \times \mathcal{L}(H_1, U)$ is called jointly admissible if *B* is an admissible control operator, *C* is an admissible observation operator, and there exists $t_0 > 0$ and M > 0 such that

$$\int_{0}^{t_{0}} \left\| C \int_{0}^{r} S_{-1}(r-s) Bu(s) ds \right\|_{U}^{2} dr \leq M \|u\|_{L^{2}(0,t_{0};U)}^{2}$$
(6)

for all $u \in W_0^{2,2}(0, t_0; U)$ where

$$W_0^{2,2}(0, t_0; U) := \{ u \in W^{2,2}(0, t_0; U) | \quad u(0) = u'(0) = 0 \}.$$

(日)

Definition 5

Let *A* be the generator of a C_0 -semigroup acting on a Banach space $H, B \in \mathcal{L}(U, H_{-1})$ and $C \in \mathcal{L}(H_1, U)$. The operator $BC \in \mathcal{L}(H_1, H_{-1})$ is called a Weiss-Staffans perturbation for *A* if the following conditions hold

(*i*)
$$R((\lambda - A)^{-1}B) \subset H_1$$
 for some $\lambda \in \rho(A)$,

(ii) B is an admissible control operator,

- (iii) C is an admissible observation operator,
- (iv) (B, C) is jointly admissible,

(v) There exists $t_0 > 0$ such that $1 \in \rho(\mathcal{F}_{t_0}^{B,C})$ where

$$\mathcal{F}_{t_0}^{B,C}u(.) = C \int_0^{.} S_{-1}(.-s) Bu(s) ds, \quad \forall u \in W_0^{2,2}(0,t_0;U).$$

Theorem 1

Let (A, D(A)) be the generator of a C_0 -semigroup S(t) on a Banach space $H, B \in \mathcal{L}(U, H_{-1})$ and $C \in \mathcal{L}(H_1, U)$. Assume that $BC \in \mathcal{L}(H_1, H_{-1})$ is a Weiss-Staffans perturbation for A. Let $(A_{-1} + BC)_{|H}$ be the operator defined defined by

$$\left(A_{-1}+BC\right)_{|H}x=A_{-1}x+BCx$$

for every $x \in D(A_{-1} + BC)_{|H}$, wehere we have

$$D(A_{-1}+BC)_{|H}:=ig\{x\in H_1: \quad ig(A_{-1}+BCig)_{|H}x\in Hig\}.$$

(日)

Theorem 1 continued

The operator $(A_{-1} + BC)_{|H}$ generates a C_0 -semigroup $(T(t))_{t \ge 0}$ on H satisfying

$$T(t)x = S(t)x + \int_0^t S_{-1}(t-s)BCT(s)xds, \quad \forall t \ge 0, \forall x \in D(A_{-1}+BC)_{|H}.$$

Theorem 2

- Let A(t), $t \ge 0$ be as in (1.2) and assume that
 - (i) $B \in \mathcal{L}(U, H_{-1})$ is an admissible control operator.
- (*ii*) The pair (B, B^*) is jointly admissible.
- (*iii*) The system (A_0, B, B^*) is compatible.
- (*iv*) There exists $t_0 > 0$ such that $\frac{1}{\sigma} \in \rho(\mathcal{F}_{t_0})$ for all $\sigma \in \alpha([0, t_0])$, where

$$\mathcal{F}_{t_0} u := \mathcal{F}_{t_0}^{B,B^*} u = B^* \int_0^{\cdot} S_{-1}(.-r) Bu(r) dr, \quad \forall u \in W_0^{2,2}(0,t_0;U).$$

(*v*) $D(A(t)) = D(A_0)$ for $t \ge 0$.

Theorem 2 continued

Then, the system governed by (1.1) and (1.2) is well posed. More precisely, there exists an evolution family $(U(t, s))_{t \ge s \ge 0}$ consisting of contractions solving (1). Hence, the solution of (1) is z(t) = U(t, 0)x for every $x \in H$. Moreover, we have the mild solution

$$z(t) = S(t)x - \int_0^t S_{-1}(t-s)\alpha(s)BB^*z(s)ds, \quad t \ge 0, x \in D(A_{-1} + BB^*)_{|H}.$$
(7)

(I)

Lemma 2

Let A(t), $t \ge 0$ be as in (1). Let $\tau > 0$. Then the operator defined on $D(A_{-1} + BB^*)_{|H}$ by

$$(\Lambda x)(t) = \sqrt{\alpha(t)}B^*z(t) = \sqrt{\alpha(t)}B^*U(t,0)x, \quad \forall x \in D(A_{-1} + BB^*)_{|H|}$$

extended to a bounded operator $\Lambda \in \mathcal{L}\big(H, L^2(\mathbb{R}_+, \textit{U})\big)$ and

$$\int_0^\tau \|(\Lambda x)(t)\|_U^2 dt = \frac{\|x\|^2 - \|U(\tau, 0)x\|^2}{2},$$

for all $x \in H$.

<ロ> <同> <同> <同> < 同> < 同>

э

Proposition 3

Let A(t), $t \ge 0$ be as in (2). Let $\tau > 0$ and z be the mild solution for the system (1). Then, there exists a positive constant a_{τ} such that for all $x \in D(A_{-1} + BB^*)_{|H}$

$$a_{\tau} \int_0^{\tau} \alpha(t) \|B^* \mathcal{S}(t) x\|^2 dt \leq \int_0^{\tau} \alpha(t) \|B^* U(t,0) x\|^2 dt \leq \int_0^{\tau} \alpha(t) \|B^* \mathcal{S}(t) x\|^2 dt$$

(I)

Remark

Let $\tau > 0$. It may be useful to rewrite the last proposition as follows

$$a_{\tau}\int_0^{\tau} \|\Theta_{\tau}x(t)\|^2 dt \leq \int_0^{\tau} \|\Lambda_{\tau}x(t)\|^2 dt \leq \int_0^{\tau} \|\Theta_{\tau}x(t)\|^2 dt, \quad \forall x \in H,$$

where

$$egin{aligned} & \Theta_ au x(t) = \sqrt{lpha(t)}(\mathcal{C}_ au x)(t), \quad orall x \in \mathcal{H}, orall t \in (0, au), \ & (\Lambda_ au x)(t) = (\Lambda x)(t), \quad orall x \in \mathcal{H}, orall t \in (0, au). \end{aligned}$$

and

$$(\mathcal{C}_{ au} x)(t) = B^* \mathcal{S}(t) x, \quad orall x \in D(\mathcal{A}), orall t \in (0, au).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Definition 6

Let $\tau > 0$ and W be a subset of H.

The pair (B*, A) is approximately W-observable in time τ if (Λ_τ)_{|W} is injective which is equivalent to the condition

$$orall x \in W, \quad \int_0^ au \| (\Lambda_ au x)(t) \|^2 dt = 0 \Longrightarrow x = 0.$$

 The pair (B*, A) is exactly W-observable in time T if (Λ_τ)_{|W} is bounded from below, or equivalently

$$\exists \mathcal{C} > 0, orall x \in \mathcal{W}, \quad \int_0^ au \| \Lambda_ au x(t) \|^2 dt \geq \mathcal{C} \| x \|^2$$

Definition 6 continued

- The pair (B*, A⁰) is approximately W-observable (resp. exactly W-observable) in time τ if (C_τ)_{|W} is injective (resp. if (C_τ)_{|W} is bounded from below).
- If W = H, we simply call the pair (B*, A) (or the pair (B*, A⁰)) approximately observable or exactly observable in time τ.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Proposition 4

Let A(t), $t \ge 0$, be as in (1). Suppose that $S(\tau) = I$ for some $\tau > 0$ and let $Z_{\tau} = U(\tau, 0)$. Then

$$N(I-Z_{\tau})=N(\Theta_{\tau})=igg\{x\in H:\quad \int_{0}^{ au}\|\Theta_{ au}x(t)\|^{2}dt=0igg\}.$$

• In particular, $\sigma(Z_{\tau}) \cap \mathbb{T} \subseteq \{1\}$.

• Moreover, if (B^*, A_0) is approximately observable in $(0, \tau)$, then $1 \notin \sigma_p(Z_\tau)$.

• Let $b_0 > 0$ and suppose that $\alpha \ge b_0$. If $1 \notin \sigma_p(Z_\tau)$, then (B^*, A_0) is approximately observable in $(0, \tau)$.

ヘロマ ヘビマ ヘビマ イロマ

Introduction Admissibility Compatibility condition Joint Admessibility Weiss-Staffans perturbation operators Well posedness of system (1.1) and (1.2) Stability and observability results First example: Pointwise stabilization of the string 1

Second example: Pointwise stabilization of the string I

Proposition 5

Let A(t), $t \ge 0$, be as in (1.2) and suppose that α is μ -periodic for some $\mu > 0$. Moreover, let $Z_{\mu} = U(\mu, 0)$ and W be a closed Z_{μ} -invariant subspace of H.

- Assume that $r((Z_{\mu})_{|W}) < 1$. Then
 - (*i*) the pair (B^*, A^0) is exactly *W*-observable in time $N\mu$ for some $N \in \mathbb{N}^*$.
 - (*ii*) if we suppose further that $S(\mu) = I$ then (B^*, A^0) is exactly *W*-observable in time μ .
- Let b₀ > 0 and suppose that α ≥ b₀, then (B*, A⁰) is exactly W-observable in time Nµ for some N ∈ N*, if and only if, r((Z_µ)_{|W}) < 1.

Theorem 3

Let A(t), $t \ge 0$, be as in (1) and suppose that α is μ -periodic for some $\mu > 0$. Moreover, let $Z_{\mu} = U(\mu, 0)$ and suppose that $S(\mu) = I$. Then

$$H = N(I - Z_{\mu}) \oplus \overline{R(I - Z_{\mu})}.$$

Moreover, let *Q* be the projection onto $N(I - Z_{\mu})$ along $\overline{R(I - Z_{\mu})}$, then

(i)
$$\overline{R(I-Z_{\mu})} = N(I-Z_{\mu})^{\perp}$$
.

(*ii*) for any $x \in H$, $||z(t) - z_0(t)|| \xrightarrow[t \to +\infty]{t \to +\infty} 0$ where z_0 is the μ -periodic solution of (1) such that $z_0(0) = Qx$.

Corollary

Let Let A(t), $t \ge 0$, be as in (1.2) and suppose that α is μ -periodic for some $\mu > 0$. Moreover, let $Z_{\mu} = U(\mu, 0)$ and suppose that $S(\mu) = I$. The following results hold

- (*i*) if the pair (B^*, A^0) is approximately observable in time μ then the the system (1, 2) is stable.
- (*ii*) Let $b_0 > 0$ and suppose that $\alpha \ge b_0$. Assume that the system (1,2) is stable. Then (B^* , A_0) is approximately observable in time μ .

Theorem 4

Let A(t), $t \ge 0$, be as in (1) and suppose that α is μ -periodic for some

 $\mu > 0$. Moreover, let $Z_{\mu} = U(\mu, 0)$ and suppose that $S(\mu) = I$.

Suppose that

- (*i*) there exists $b_0 > 0$ such that $\alpha \ge b_0$ and
- (*ii*) the pair (B^* , A^0) is exactly observable in time μ .

Then the system (1) is exponentially stable.

If the system (1) is exponentially stable then (B*, A₀) is exactly observable in time μ.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

We consider the following initial and boundary problem:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + \alpha(t) \frac{\partial u}{\partial t}(\xi, t) \,\delta_{\xi} = 0, \, (x, t) \in (0, 1) \times (0, +\infty), \\ u(0, t) = u(1, t) = 0, \, t \in (0, +\infty), \\ u(x, 0) = u^0(x), \, \frac{\partial u}{\partial t}(x, 0) = u^1(x), \, x \in (0, 1), \end{cases}$$
(8)

where $\xi \in (0, 1)$ and δ_{ξ} is the Dirac mass concentrated in the point $\xi \in (0, 1)$.

In this case, we have

•
$$H = H_0^1(0,1) \times L^2(0,1), H_1 = (H^2(0,1) \cap H_0^1(0,1)) \times H_0^1(0,1).$$

•
$$H_{-1} = L^2(0,1) \times H^{-1}(0,1).$$

•
$$A^{0} = \begin{pmatrix} 0 & l \\ \frac{d^{2}}{dx^{2}} & 0 \end{pmatrix}$$
 : $H_{1} \subset H \to H$.
• $Bk = \begin{pmatrix} 0 \\ k\delta_{\xi} \end{pmatrix}$, $\forall k \in \mathbb{C}$ and $B^{*} \begin{pmatrix} f \\ g \end{pmatrix} = g(\xi), \forall (f,g) \in H_{1}$.
• $BB^{*} \begin{pmatrix} f \\ g \end{pmatrix} = \begin{pmatrix} 0 \\ g(\xi) \delta_{\xi} \end{pmatrix}$, $\forall (f,g) \in H_{1}$.

Remark

For any $\xi \in (0, 1)$ the system described by (8) with $\alpha \equiv 1$, is not exponentially stable in *H*, see [6.].

Lemma 3 (see [6.])

Suppose that $(u_0, u_1) \in H$. Then the initial and boundary value problem

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, (x, t) \in (0, 1) \times (0, +\infty), \\ u(0, t) = u(1, t) = 0, t \in (0, +\infty), \\ u(x, 0) = \varphi_0(x), \frac{\partial u}{\partial t}(x, 0) = \varphi_1(x), x \in (0, 1), \end{cases}$$
(9)

admit a unique solution $\varphi \in C(0, T; H_0^1) \cap C^1(0, T; L^2(0, 1))$ and there exists a constant C > 0 such that

$$\int_{0}^{2} |\frac{\partial \varphi}{\partial t}(\xi, t)|^{2} dt \leq C \| \begin{pmatrix} \varphi_{1} \\ \varphi_{0} \end{pmatrix} \|_{H}^{2}.$$
(10)

Makrem Salhi Stabilization by unbounded and periodic feedback

Lemma 4 (see [6.])

Let $u \in L^2(0, T)$ (T > 0), then the problem

$$\begin{cases} \frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial x^2} + u(t) \,\delta_{\xi} = 0, \, (x,t) \in (0,1) \times (0,+\infty), \\ \psi(0,t) = \psi(1,t) = 0, \, t \in (0,+\infty), \\ \psi(x,0) = 0, \, \frac{\partial \psi}{\partial t}(x,0) = 0, \, x \in (0,1), \end{cases}$$
(11)

admit a unique solution $\psi \in C(0, T; H_0^1(0, 1)) \cap C^1(0, T; L^2(0, 1))$ and there exists a constant M > 0 such that

$$\int_0^2 |\frac{\partial \psi}{\partial t}(\xi, t)|^2 dt \le M \|u\|_{L^2(0,2;\mathbb{C})}.$$
(12)

Makrem Salhi Stabilization by unbounded and periodic feedback

Theorem 5

Let M > 0 defined as in Lemma 4. Suppose that α is continuously differentiable, 2-periodic and $\alpha \leq \frac{1}{M}$ then, for any $\xi \in (0, 1)$, The initial boundary problem (8) is well-posed and not exponentially stable in $H_0^1 \times L^2(0, 1)$.

(日)

Sketch of the proof

i. Let
$$(\varphi_0, \varphi_1) \in H = H_0^1(0, 1) \times L^2(0, 1)$$
. Then,
 $S(t) \begin{pmatrix} \varphi_1 \\ \varphi_0 \end{pmatrix} = \tilde{\varphi} := \begin{pmatrix} \varphi \\ \frac{\partial \varphi}{\partial t} \end{pmatrix}$, where φ is the solution of (9). Note that $\tilde{\varphi}(t)$ is 2-periodic.

ii. By using Lemma 3, we get

$$\int_0^2 \left| B^* S(t) \begin{pmatrix} \varphi_1 \\ \varphi_0 \end{pmatrix} \right|^2 dt = \int_0^2 \left| \frac{\partial \varphi}{\partial t}(\xi, t) \right|^2 dt \le C \| \begin{pmatrix} \varphi_1 \\ \varphi_0 \end{pmatrix} \|_{H^1}^2$$

Then assertion (*i*) in Theorem 2 is satisfied.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Sketch of the proof continued

i. Let
$$u \in W_0^{2,2}(0,2;\mathbb{C})$$
 and $P(t) = \int_0^t S_{-1}(t-s)Bu(s)ds$. Then *P* is solution of

$$\begin{cases} P'(t) = A^0 P(t) + Bu(t), & t \in (0, +\infty), \\ P(0) = 0, \end{cases}$$
(13)

Putting $P = \begin{pmatrix} \psi \\ \nu \end{pmatrix}$, (13) is equivalent to (11). Then, by Lemma 4, $\int_{0}^{2} |B^{*}P(t)|^{2} dt = \int_{0}^{2} |\frac{\partial \psi}{\partial t}(\xi, t)|^{2} dt \leq M ||u||_{L^{2}(0,2;\mathbb{C})}.$ Hence, assertion (*ii*) in Theorem 2 is satisfied.

Sketch of the proof continued

ii. Moreover, again from [6.], we have that for every $\lambda \in \mathbb{C}$ such that $Re(\lambda) > 0$,

 $R((\lambda - A^0)^{-1}B) \subset H_1.$

So the assertions (iii) of Theorem 2.2 are satisfied.

iii. Since $\|\alpha\|_{\infty} < \frac{1}{M}$, we deduce using (12),

$$\frac{1}{\sigma} \in
ho(\mathcal{F}_2), \quad \forall \, \sigma \in lpha([0,2]).$$

Then, assertion (iv) in Theorem 2 is satisfied.

Sketch of the proof continued

iv. By using continuous fractions, there exists a sequence q_m of positive integer numbers such that $q_m \to \infty$ and

$$|\sin(q_m\pi\xi)|\leq rac{\pi}{q_m}, \ \forall m\geq 1.$$

v. Then we take $(\varphi_0, \varphi_1) = (0, \sin(q_m \pi x))$ in (9) to conclude that (B^*, A^0) is not exactly observable in time 2. Theorem 4 achieves the proof.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Theorem 6

Suppose that α satisfies the hypothesis in Theorem 5 and $\alpha \ge b_0$ for some positive number b_0 . Then, the system described by (8) is strongly stable if and only if $\xi \notin \mathbb{Q}$.

Sketch of the proof

• Let
$$(\varphi_0, \varphi_1) \in H_1$$
. We have
 $\varphi_0(x) = \sum_{k=1}^{+\infty} a_k \sin(k\pi x) \text{ and } \varphi_1(x) = \sum_{k=1}^{+\infty} b_k \sin(k\pi x) \text{ where}$
 $(ka_k), (b_k) \in l^2$.

• Then the solution φ of (9) is given by

$$\varphi(x,t) = \sum_{k\geq 1} \left(a_k \cos(k\pi t) + \frac{b_k}{k\pi} \sin(k\pi t) \right) \sin(k\pi x).$$

• Recall that
$$B^*S(t)\begin{pmatrix} \varphi_0\\ \varphi_1 \end{pmatrix} = \frac{\partial \varphi}{\partial t}(\xi, t).$$

Sketch of the proof continued

• By using Ingham inequality, we get,

$$\int_{0}^{2} |\alpha(t)| \left| B^{*}S(t) \begin{pmatrix} \varphi_{1} \\ \varphi_{0} \end{pmatrix} \right|^{2} dt = \int_{0}^{2} |\alpha(t)| \left| \frac{\partial \varphi}{\partial t}(\xi, t) \right|^{2} dt$$
$$\geq c \sum_{k=1}^{+\infty} \frac{1}{k^{2}} \left(k^{2} |a_{k}|^{2} + |b_{k}|^{2} \right) \sin^{2}(k\pi\xi)$$

for some positive constant *c*. This implies the approximate observability of (B^*, A^0) in time 2 for $\xi \notin \mathbb{Q}$.

(日)

Sketch of the proof continued

For the converse, suppose that ξ = ^p/_q with (p, q ∈ N), q ≠ 0. It suffices to take (φ₀, φ₁) = (0, sin(qx)) to conclude that (B^{*}, A) is not approximate observable (in time 2).

(日)

1

We consider the following initial and boundary problem:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + \alpha(t) \frac{\partial u}{\partial t}(\xi, t) \,\delta_{\xi} = 0, \, (x, t) \in (0, 1) \times (0, +\infty), \\ u(0, t) = \frac{\partial u}{\partial t}(1, t) = 0, \, t \in (0, +\infty), \\ u(x, 0) = u^0(x), \, \frac{\partial u}{\partial t}(x, 0) = u^1(x), \, x \in (0, 1), \end{cases}$$
(14)

where $\xi \in (0, 1)$ and δ_{ξ} is the Dirac mass concentrated in the point $\xi \in (0, 1)$. In this case we have

•
$$H = V \times L^2(0,1)$$
 where $V := \{ u \in H^1(0,1) \mid u(0) = 0 \}.$

•
$$H_1 = \{(u, v) \in H^2(0, 1) \times H^1(0, 1), u(0) = v(0) = \frac{du}{dx}(1) = 0\}.$$

•
$$H_{-1} = L^2(0,1) \times H^{-1}(0,1).$$

•
$$A^{0} = \begin{pmatrix} 0 & l \\ \frac{d^{2}}{dx^{2}} & 0 \end{pmatrix}$$
 : $H_{1} \subset H \rightarrow H$.
• $Bk = \begin{pmatrix} 0 \\ k\delta_{\xi} \end{pmatrix}$, $\forall k \in \mathbb{C}$.
• $B^{*} \begin{pmatrix} f \\ g \end{pmatrix} = g(\xi), \forall (f,g) \in H_{1}$.
• $BB^{*} \begin{pmatrix} f \\ g \end{pmatrix} = \begin{pmatrix} 0 \\ g(\xi) \delta_{\xi} \end{pmatrix}$, $\forall (f,g) \in H_{1}$.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

æ

Remark

The case of $\alpha \equiv 1$ was studied in [3.], see also [4.], The authors proved that the system is exponentially stable in the energy space *H* if and only if $\xi \in (0, 1)$ admits a coprime factorization

$$\xi = \frac{p}{q}$$
 with p odd. (15)

The fastest decay rate is obtained if $\xi = \frac{1}{2}$. They proved also that the strong stability, with initial data in *H*, is obtained if and only if

$$\xi
eq rac{2p}{2q-1} \ \ \forall p,q \in \mathbb{N}.$$

Theorem 7

Suppose that α is continuously differentiable, 2-periodic. There exists M > 0 such that, if $\alpha \leq M$ then,

(i) For any $\xi \in (0, 1)$, The initial boundary problem (14) is well-posed in $H = V \times L^2(0, 1)$.

If in addition, there exists $b_0 > 0$ such that $\alpha \ge b_0$, we have

(ii) The initial boundary problem (14) is strong stability, with initial data

in *H*, if and only if $\xi \neq \frac{2p}{2q-1}$ for all $p, q \in \mathbb{N}$.

(iii) The initial boundary problem (14), with initial data in *H* is exponentially stable in the energy space *H* if and only if $\xi \in (0, 1)$ admits a coprime factorization $\xi = \frac{p}{q}$ with *p* odd.

References

- M. Adler, M. Bombieri and K. J. Engel, On perturbations of generators of C₀-Semigroups, *Abstr. Appl. Anal.*, Art. ID 213020, 13 pp.
- 2. K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, **39** (2000), 1160–1181.
- 3. K. Ammari, A. Henrot and M. Tucsnak, Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string, **28** (2001), 215–240.
- 4. K. Ammari, A. Henrot and M. Tucsnak, Optimal location of the actuator for the pointwise stabilization of a string,

References

- Ammari, K., El Alaoui, S. and ouzahra, M. Feedback Stabilization of Linear and Bilinear Ubounded Systems in Banach Space. Systems and Control Letters 155(3):104987 (2021).
- Ammari, K., Tucsnak, M.: Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM Control Optim. Calc. Var. 6, 361-386 (2001).
- 7. Katznelson, Y. and Tzafriri, L. On power bounded operators. J. Funct. Anal., 68, 313-328, 1928.
- 8. Pazy, A. Semigroups of linear operators and Applications to Partial Differential Equations. Springer, New York, 1983.
- 9. M. Tucsnak, On the pointwise stabilization of a string, in: Control

Thank for your attention

Makrem Salhi Stabilization by unbounded and periodic feedback

A D N A D N A D N A D