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Definitions and Notations

Consider the infinite-dimensional observation system

{ .
z(t) = A(t)z(t), t ≥ 0,
z(0) = x ∈ H

(1)

where
A(t) = A0 − α(t)BB∗, t ≥ 0. (2)

• α : R+ −→ R is a positive, bounded and continuously
differentiable function.
• A0 : D(A0) ⊂ H −→ H is a skew-adjoint operator and H is a

Hilbert space endowed with the norm ‖ ‖.
Makrem Salhi Stabilization by unbounded and periodic feedback
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• The control operator B ∈ L(U,H−1), which may be unbounded
(i.e. not in L(U,H)) , is acting on some Hilbert space U.
• Let H1 be the Banach space D(A0) endowed with it’s graph norm

and H−1 := D(A0)′ be the dual space of D(A0) with respect to the
pivot space H.
• We have the inclusions H1 ⊂ H ⊂ H−1 with continuous

embeddings.
• According to Stone’s theorem , the operator A0 generates a

unitary group (S(t))t∈R.
• Then, the strongly continuous group (S(t))t∈R can be extented to

a strongly continuous unitary group S−1(t) on H−1 whose
generator is the extension A−1 ∈ L(H,H−1) of A0 ∈ L(H1,H).
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Definition 1
The operator B ∈ L(U,H−1) is called an admissible control operator
(for S) if there exists t0 > 0 such that∫ t0

0
S−1(t0 − s)Bu(s)ds ∈ H, ∀u ∈ L2(0, t0; U).
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Proposition 1
Let B ∈ L(U,H−1) be admissible control operator. For t > 0, we define
Bt ∈ L

(
L2(R+,U),H−1

)
by

Btu =

∫ t

0
S−1(t − r)Bu(r)dr .

Then, for every t ≥ 0 we have

Bt ∈ L
(
L2(R+,U),H

)
.
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Definition 2
Let C ∈ L(H1,U). For t ≥ 0, we define Ct ∈ L

(
H1,L2([0, t ],U)

)
by(

Ctx
)
(s) = CS(s)x , ∀x ∈ D(A0), ∀s ∈ [0, t ]. (3)

The operator C ∈ L(H1,U) is called an admissible observation
operator (for S) if for some t0 > 0, Ct0 has a continuous extension to H.
Equivalently, C ∈ L(H1,U) is an admissible observation operator if for
some t0 > 0 there exists Mt0 > 0 such that∫ t0

0

∥∥CS(t)x
∥∥2

Udt ≤ Mt0‖x‖
2
H , ∀x ∈ D(A0). (4)
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Proposition 2
If C ∈ L(H1,U) is admissible. For t ≥ 0, define(

Ctx
)
(s) = CS(s)x , ∀x ∈ D(A0), ∀s ∈ [0, t ].

Then, for every t ≥ 0 we have

Ct ∈ L
(
H,L2([0, t ],U)

)
.
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Lemma 1
Suppose that B ∈ L(U,H−1). Then,
B is an admissible control operator (for S), if and only if, B∗ is an
admissible observation operator (for S∗ = −S).
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Definition 3
The system (A0,B,C), with (B,C) ∈ L(U,H−1)× L(H1,U) is called
compatible if for some λ ∈ ρ(A0) we have

R
(
(λ− A−1)−1B

)
⊂ H1. (5)

Remark
It is obvious that if the inclusion (5) holds for some λ ∈ ρ(A0), then it
holds for all λ ∈ ρ(A0) by the resolvent identity. Moreover, by the
closed graph theorem, we have

C(λ− A−1)−1B ∈ L(U), ∀λ ∈ ρ(A0).
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• If not stated otherwise, in the sequel we always assume that the
compatibility condition holds.

Makrem Salhi Stabilization by unbounded and periodic feedback



Introduction
Admissibility

Compatibility condition
Joint Admessibility

Weiss-Staffans perturbation operators
Well posedness of system (1.1) and (1.2)

Stability and observability results
First example: Pointwise stabilization of the string I

Second example: Pointwise stabilization of the string II

Definition 4
The pair (B,C) ∈ L(U,H−1)× L(H1,U) is called jointly admissible if B
is an admissible control operator, C is an admissible observation
operator, and there exists t0 > 0 and M > 0 such that∫ t0

0

∥∥∥∥C
∫ r

0
S−1(r − s)Bu(s)ds

∥∥∥∥2

U
dr ≤ M‖u‖2L2(0,t0;U) (6)

for all u ∈W 2,2
0 (0, t0; U) where

W 2,2
0 (0, t0; U) :=

{
u ∈W 2,2(0, t0; U)

∣∣ u(0) = u′(0) = 0
}
.
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Definition 5
Let A be the generator of a C0-semigroup acting on a Banach space
H, B ∈ L(U,H−1) and C ∈ L(H1,U). The operator BC ∈ L(H1,H−1) is
called a Weiss-Staffans perturbation for A if the following conditions
hold
(i) R

(
(λ− A)−1B

)
⊂ H1 for some λ ∈ ρ(A),

(ii) B is an admissible control operator,
(iii) C is an admissible observation operator,
(iv) (B,C) is jointly admissible,

(v) There exists t0 > 0 such that 1 ∈ ρ(FB,C
t0 ) where

FB,C
t0 u(.) = C

∫ .

0
S−1(.− s)Bu(s)ds, ∀u ∈W 2,2

0 (0, t0; U).
Makrem Salhi Stabilization by unbounded and periodic feedback
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Theorem 1
Let (A,D(A)) be the generator of a C0-semigroup S(t) on a Banach
space H, B ∈ L(U,H−1) and C ∈ L(H1,U). Assume that
BC ∈ L(H1,H−1) is a Weiss-Staffans perturbation for A. Let
(A−1 + BC)|H be the operator defined defined by(

A−1 + BC
)
|Hx = A−1x + BCx

for every x ∈ D
(
A−1 + BC

)
|H , wehere we have

D(A−1 + BC)|H :=
{

x ∈ H1 :
(
A−1 + BC

)
|Hx ∈ H

}
.
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Theorem 1 continued
The operator (A−1 + BC)|H generates a C0-semigroup

(
T (t)

)
t≥0 on H

satisfying

T (t)x = S(t)x+

∫ t

0
S−1(t−s)BCT (s)xds, ∀t ≥ 0,∀x ∈ D(A−1+BC)|H .
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Theorem 2
Let A(t), t ≥ 0 be as in (1.2) and assume that
(i) B ∈ L(U,H−1) is an admissible control operator.
(ii) The pair (B,B∗) is jointly admissible.
(iii) The system (A0,B,B∗) is compatible.

(iv) There exists t0 > 0 such that
1
σ
∈ ρ
(
Ft0
)

for all σ ∈ α
(
[0, t0]

)
,

where

Ft0u := FB,B∗

t0 u = B∗
∫ .

0
S−1(.− r)Bu(r)dr , ∀u ∈W 2,2

0 (0, t0; U).

(v) D(A(t)) = D(A0) for t ≥ 0.
Makrem Salhi Stabilization by unbounded and periodic feedback
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Theorem 2 continued
Then, the system governed by (1.1) and (1.2) is well posed.
More precisely, there exists an evolution family (U(t , s))t≥s≥0
consisting of contractions solving (1).
Hence, the solution of (1) is z(t) = U(t ,0)x for every x ∈ H.
Moreover, we have the mild solution

z(t) = S(t)x−
∫ t

0
S−1(t−s)α(s)BB∗z(s)ds, t ≥ 0, x ∈ D(A−1+BB∗)|H .

(7)
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Lemma 2
Let A(t), t ≥ 0 be as in (1). Let τ > 0. Then the operator defined on
D(A−1 + BB∗)|H by

(Λx)(t) =
√
α(t)B∗z(t) =

√
α(t)B∗U(t ,0)x , ∀x ∈ D(A−1 + BB∗)|H

extended to a bounded operator Λ ∈ L
(
H,L2(R+,U)

)
and∫ τ

0
‖(Λx)(t)‖2Udt =

‖x‖2 − ‖U(τ,0)x‖2

2
,

for all x ∈ H.
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Proposition 3
Let A(t), t ≥ 0 be as in (2). Let τ > 0 and z be the mild solution for the
system (1). Then, there exists a positive constant aτ such that for all
x ∈ D(A−1 + BB∗)|H

aτ
∫ τ

0
α(t)‖B∗S(t)x‖2dt ≤

∫ τ

0
α(t)‖B∗U(t ,0)x‖2dt ≤

∫ τ

0
α(t)‖B∗S(t)x‖2dt .
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Remark
Let τ > 0. It may be useful to rewrite the last proposition as follows

aτ
∫ τ

0
‖Θτx(t)‖2dt ≤

∫ τ

0
‖Λτx(t)‖2dt ≤

∫ τ

0
‖Θτx(t)‖2dt , ∀x ∈ H,

where
Θτx(t) =

√
α(t)(Cτx)(t), ∀x ∈ H,∀t ∈ (0, τ),

(Λτx)(t) = (Λx)(t), ∀x ∈ H,∀t ∈ (0, τ)

and
(Cτx)(t) = B∗S(t)x , ∀x ∈ D(A), ∀t ∈ (0, τ).
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Definition 6
Let τ > 0 and W be a subset of H.

The pair (B∗,A) is approximately W -observable in time τ if (Λτ )|W
is injective which is equivalent to the condition

∀x ∈W ,

∫ τ

0
‖(Λτx)(t)‖2dt = 0 =⇒ x = 0.

The pair (B∗,A) is exactly W -observable in time T if (Λτ )|W is
bounded from below, or equivalently

∃C > 0, ∀x ∈W ,

∫ τ

0
‖Λτx(t)‖2dt ≥ C‖x‖2.
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Definition 6 continued
The pair (B∗,A0) is approximately W -observable (resp. exactly
W -observable) in time τ if (Cτ )|W is injective (resp. if (Cτ )|W is
bounded from below).
If W = H, we simply call the pair (B∗,A) (or the pair (B∗,A0))
approximately observable or exactly observable in time τ .
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Proposition 4
Let A(t), t ≥ 0, be as in (1). Suppose that S(τ) = I for some τ > 0 and
let Zτ = U(τ,0). Then

N(I − Zτ ) = N(Θτ ) =

{
x ∈ H :

∫ τ

0
‖Θτx(t)‖2dt = 0

}
.

• In particular, σ(Zτ ) ∩ T ⊆ {1}.
• Moreover, if (B∗,A0) is approximately observable in (0, τ), then
1 /∈ σp(Zτ ).
• Let b0 > 0 and suppose that α ≥ b0. If 1 /∈ σp(Zτ ), then (B∗,A0) is
approximately observable in (0, τ).
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Proposition 5
Let A(t), t ≥ 0, be as in (1.2) and suppose that α is µ-periodic for
some µ > 0. Moreover, let Zµ = U(µ,0) and W be a closed
Zµ-invariant subspace of H.

1 Assume that r
(
(Zµ)|W

)
< 1. Then

(i) the pair (B∗,A0) is exactly W -observable in time Nµ for some
N ∈ N∗.

(ii) if we suppose further that S(µ) = I then (B∗,A0) is exactly
W -observable in time µ.

2 Let b0 > 0 and suppose that α ≥ b0, then (B∗,A0) is exactly
W -observable in time Nµ for some N ∈ N∗, if and only if,
r
(
(Zµ)|W

)
< 1.
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Theorem 3
Let A(t), t ≥ 0, be as in (1) and suppose that α is µ-periodic for some
µ > 0. Moreover, let Zµ = U(µ,0) and suppose that S(µ) = I. Then

H = N(I − Zµ)⊕ R(I − Zµ).

Moreover, let Q be the projection onto N(I − Zµ) along R(I − Zµ), then

(i) R(I − Zµ) = N(I − Zµ)⊥.
(ii) for any x ∈ H, ‖z(t)− z0(t)‖ −→

t→+∞
0 where z0 is the µ-periodic

solution of (1) such that z0(0) = Qx .

Makrem Salhi Stabilization by unbounded and periodic feedback



Introduction
Admissibility

Compatibility condition
Joint Admessibility

Weiss-Staffans perturbation operators
Well posedness of system (1.1) and (1.2)

Stability and observability results
First example: Pointwise stabilization of the string I

Second example: Pointwise stabilization of the string II

Corollary
Let Let A(t), t ≥ 0, be as in (1.2) and suppose that α is µ-periodic for
some µ > 0. Moreover, let Zµ = U(µ,0) and suppose that S(µ) = I.
The following results hold
(i) if the pair (B∗,A0) is approximately observable in time µ then the

the system (1,2) is stable.
(ii) Let b0 > 0 and suppose that α ≥ b0. Assume that the system

(1,2) is stable. Then (B∗,A0) is approximately observable in time
µ.
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Theorem 4
Let A(t), t ≥ 0, be as in (1) and suppose that α is µ-periodic for some
µ > 0. Moreover, let Zµ = U(µ,0) and suppose that S(µ) = I.

1 Suppose that
(i) there exists b0 > 0 such that α ≥ b0 and
(ii) the pair (B∗,A0) is exactly observable in time µ.

Then the system (1) is exponentially stable.
2 If the system (1) is exponentially stable then (B∗,A0) is exactly

observable in time µ.
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We consider the following initial and boundary problem:
∂2u
∂t2 −

∂2u
∂x2 + α(t)

∂u
∂t

(ξ, t) δξ = 0, (x , t) ∈ (0,1)× (0,+∞),

u(0, t) = u(1, t) = 0, t ∈ (0,+∞),

u(x ,0) = u0(x),
∂u
∂t

(x ,0) = u1(x), x ∈ (0,1),

(8)

where ξ ∈ (0,1) and δξ is the Dirac mass concentrated in the point
ξ ∈ (0,1).

In this case, we have
• H = H1

0 (0,1)× L2(0,1), H1 =
(
H2(0,1) ∩ H1

0 (0,1)
)
× H1

0 (0,1).
• H−1 = L2(0,1)× H−1(0,1).
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• A0 =

(
0 I
d2

dx2 0

)
: H1 ⊂ H → H.

• Bk =

(
0

kδξ

)
, ∀k ∈ C and B∗

(
f
g

)
= g(ξ), ∀ (f ,g) ∈ H1.

• BB∗
(

f
g

)
=

(
0

g(ξ) δξ

)
, ∀ (f ,g) ∈ H1.

Remark
For any ξ ∈ (0,1) the system described by (8) with α ≡ 1, is not
exponentially stable in H, see [6.].
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Lemma 3 (see [6.])
Suppose that (u0,u1) ∈ H. Then the initial and boundary value
problem 

∂2u
∂t2 − ∂2u

∂x2 = 0, (x , t) ∈ (0,1)× (0,+∞),

u(0, t) = u(1, t) = 0, t ∈ (0,+∞),

u(x ,0) = ϕ0(x), ∂u
∂t (x ,0) = ϕ1(x), x ∈ (0,1),

(9)

admit a unique solution ϕ ∈ C(0,T ; H1
0 ) ∩ C1(0,T ; L2(0,1)) and there

exists a constant C > 0 such that∫ 2

0
|∂ϕ
∂t

(ξ, t)|2dt ≤ C‖
(
ϕ1
ϕ0

)
‖2H . (10)
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Lemma 4 (see [6.])

Let u ∈ L2(0,T ) (T > 0), then the problem
∂2ψ

∂t2 −
∂2ψ

∂x2 + u(t) δξ = 0, (x , t) ∈ (0,1)× (0,+∞),

ψ(0, t) = ψ(1, t) = 0, t ∈ (0,+∞),

ψ(x ,0) = 0,
∂ψ

∂t
(x ,0) = 0, x ∈ (0,1),

(11)

admit a unique solution ψ ∈ C(0,T ; H1
0 (0,1)) ∩ C1(0,T ; L2(0,1)) and

there exists a constant M > 0 such that∫ 2

0
|∂ψ
∂t

(ξ, t)|2dt ≤ M‖u‖L2(0,2;C). (12)
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Theorem 5
Let M > 0 defined as in Lemma 4. Suppose that α is continuously

differentiable, 2-periodic and α ≤ 1
M

then, for any ξ ∈ (0,1), The initial
boundary problem (8) is well-posed and not exponentially stable in
H1

0 × L2(0,1).
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Sketch of the proof

i . Let (ϕ0, ϕ1) ∈ H = H1
0 (0,1)× L2(0,1). Then,

S(t)
(
ϕ1
ϕ0

)
= ϕ̃ :=

(
ϕ
∂ϕ
∂t

)
, where ϕ is the solution of (9). Note that

ϕ̃(t) is 2-periodic.
ii . By using Lemma 3, we get∫ 2

0

∣∣∣∣B∗S(t)
(
ϕ1
ϕ0

)∣∣∣∣2 dt =

∫ 2

0

∣∣∣∣∂ϕ∂t
(ξ, t)

∣∣∣∣2 dt ≤ C‖
(
ϕ1
ϕ0

)
‖2H .

Then assertion (i) in Theorem 2 is satisfied.
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Sketch of the proof continued

i . Let u ∈W 2,2
0 (0,2;C) and P(t) =

∫ t

0
S−1(t − s)Bu(s)ds. Then P is

solution of {
P ′(t) = A0P(t) + Bu(t), t ∈ (0,+∞),
P(0) = 0,

(13)

Putting P =

(
ψ
ν

)
, (13) is equivalent to (11). Then, by Lemma 4,∫ 2

0
|B∗P(t)|2dt =

∫ 2

0
|∂ψ
∂t

(ξ, t)|2dt ≤ M‖u‖L2(0,2;C).

Hence, assertion (ii) in Theorem 2 is satisfied.
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Sketch of the proof continued
ii . Moreover, again from [6.], we have that for every λ ∈ C such that

Re(λ) > 0,
R((λ− A0)−1B) ⊂ H1.

So the assertions (iii) of Theorem 2.2 are satisfied.

iii . Since ‖α‖∞ <
1
M

, we deduce using (12),

1
σ
∈ ρ(F2), ∀σ ∈ α([0,2]).

Then, assertion (iv) in Theorem 2 is satisfied.
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Sketch of the proof continued
iv . By using continuous fractions, there exists a sequence qm of

positive integer numbers such that qm →∞ and

| sin(qmπξ)| ≤ π

qm
, ∀m ≥ 1.

v . Then we take (ϕ0, ϕ1) =
(
0, sin(qmπx)

)
in (9) to conclude that

(B∗,A0) is not exactly observable in time 2. Theorem 4 achieves
the proof.
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Theorem 6
Suppose that α satisfies the hypothesis in Theorem 5 and α ≥ b0 for
some positive number b0. Then, the system described by (8) is
strongly stable if and only if ξ /∈ Q.
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Sketch of the proof
• Let (ϕ0, ϕ1) ∈ H1. We have

ϕ0(x) =
+∞∑
k=1

ak sin(kπx) and ϕ1(x) =
+∞∑
k=1

bk sin(kπx) where

(kak ), (bk ) ∈ l2.
• Then the solution ϕ of (9) is given by

ϕ(x , t) =
∑
k≥1

(
ak cos(kπt) +

bk

kπ
sin(kπt)

)
sin(kπx).

• Recall that B∗S(t)
(
ϕ0
ϕ1

)
=
∂ϕ

∂t
(ξ, t).
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Sketch of the proof continued
• By using Ingham inequality, we get,∫ 2

0
|α(t)|

∣∣∣∣B∗S(t)
(
ϕ1
ϕ0

)∣∣∣∣2 dt =

∫ 2

0
|α(t)|

∣∣∣∣∂ϕ∂t
(ξ, t)

∣∣∣∣2 dt

≥ c
+∞∑
k=1

1
k2

(
k2|ak |2 + |bk |2

)
sin2(kπξ)

for some positive constant c. This implies the approximate
observability of (B∗,A0) in time 2 for ξ /∈ Q.
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Sketch of the proof continued

• For the converse, suppose that ξ =
p
q

with (p,q ∈ N), q 6= 0. It

suffices to take (ϕ0, ϕ1) = (0, sin(qx)) to conclude that (B∗,A) is
not approximate observable (in time 2).
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We consider the following initial and boundary problem:
∂2u
∂t2 −

∂2u
∂x2 + α(t)

∂u
∂t

(ξ, t) δξ = 0, (x , t) ∈ (0,1)× (0,+∞),

u(0, t) =
∂u
∂t

(1, t) = 0, t ∈ (0,+∞),

u(x ,0) = u0(x),
∂u
∂t

(x ,0) = u1(x), x ∈ (0,1),

(14)

where ξ ∈ (0,1) and δξ is the Dirac mass concentrated in the point
ξ ∈ (0,1). In this case we have
• H = V × L2(0,1) where V :=

{
u ∈ H1(0,1) | u(0) = 0

}
.

• H1 =
{

(u, v) ∈ H2(0,1)× H1(0,1), u(0) = v(0) = du
dx (1) = 0

}
.

• H−1 = L2(0,1)× H−1(0,1).
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• A0 =

(
0 I
d2

dx2 0

)
: H1 ⊂ H → H.

• Bk =

(
0

kδξ

)
, ∀k ∈ C.

• B∗
(

f
g

)
= g(ξ),∀ (f ,g) ∈ H1.

• BB∗
(

f
g

)
=

(
0

g(ξ) δξ

)
, ∀ (f ,g) ∈ H1.
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Remark
The case of α ≡ 1 was studied in [3.], see also [4.], The authors
proved that the system is exponentially stable in the energy space H if
and only if ξ ∈ (0,1) admits a coprime factorization

ξ =
p
q

with p odd. (15)

The fastest decay rate is obtained if ξ =
1
2

. They proved also that the
strong stability, with initial data in H, is obtained if and only if

ξ 6= 2p
2q − 1

∀p,q ∈ N.
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Theorem 7
Suppose that α is continuously differentiable, 2-periodic. There exists
M > 0 such that, if α ≤ M then,
(i) For any ξ ∈ (0,1), The initial boundary problem (14) is well-posed in
H = V × L2(0,1).
If in addition, there exists b0 > 0 such that α ≥ b0, we have
(ii) The initial boundary problem (14) is strong stability, with initial data

in H, if and only if ξ 6= 2p
2q − 1

for all p,q ∈ N.

(iii) The initial boundary problem (14), with initial data in H is
exponentially stable in the energy space H if and only if ξ ∈ (0,1)

admits a coprime factorization ξ =
p
q

with p odd.

Makrem Salhi Stabilization by unbounded and periodic feedback



Introduction
Admissibility

Compatibility condition
Joint Admessibility

Weiss-Staffans perturbation operators
Well posedness of system (1.1) and (1.2)

Stability and observability results
First example: Pointwise stabilization of the string I

Second example: Pointwise stabilization of the string II

References
1. M. Adler, M. Bombieri and K. J. Engel, On perturbations of

generators of C0-Semigroups, Abstr. Appl. Anal., Art. ID 213020,
13 pp.

2. K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams
by means of a pointwise feedback force, 39 (2000), 1160–1181.

3. K. Ammari, A. Henrot and M. Tucsnak, Asymptotic behaviour of
the solutions and optimal location of the actuator for the pointwise
stabilization of a string, 28 (2001), 215–240.

4. K. Ammari, A. Henrot and M. Tucsnak, Optimal location of the
actuator for the pointwise stabilization of a string,

Makrem Salhi Stabilization by unbounded and periodic feedback



Introduction
Admissibility

Compatibility condition
Joint Admessibility

Weiss-Staffans perturbation operators
Well posedness of system (1.1) and (1.2)

Stability and observability results
First example: Pointwise stabilization of the string I

Second example: Pointwise stabilization of the string II

References
5. Ammari, K., El Alaoui, S. and ouzahra, M. Feedback Stabilization

of Linear and Bilinear Ubounded Systems in Banach Space.
Systems and Control Letters 155(3):104987 (2021).

6. Ammari, K., Tucsnak, M.: Stabilization of second order evolution
equations by a class of unbounded feedbacks. ESAIM Control
Optim. Calc. Var. 6, 361-386 (2001).

7. Katznelson, Y. and Tzafriri, L. On power bounded operators. J.
Funct. Anal., 68, 313-328, 1928.

8. Pazy, A. Semigroups of linear operators and Applications to Partial
Differential Equations. Springer, New York, 1983.

9. M. Tucsnak, On the pointwise stabilization of a string, in: Control
and Estimation of Distributed Parameter Systems, W. Desch, F.
Kappel and K. Kunisch, eds, Internat. Ser. Numer. Math., Vol.
126.

Makrem Salhi Stabilization by unbounded and periodic feedback



Introduction
Admissibility

Compatibility condition
Joint Admessibility

Weiss-Staffans perturbation operators
Well posedness of system (1.1) and (1.2)

Stability and observability results
First example: Pointwise stabilization of the string I

Second example: Pointwise stabilization of the string II

Thank for your attention
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