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Objectives

Modeling:

1 The first objective is to propose a
solutions to avoid the torsional
and axial vibrations.

2 Basically, in our designs we use
the backstepping techniques and
the Lyapunov theory to establish
the stability analysis.

Optimization of rate of penetration:
We presents a comparison between three
optimization methods, which is done by
constructing mathematical models based
on Eckel’s equation, Galle and Woods
equation and the regression model. Figure: Drilling system
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Oilwell drilling system

Types of vibrations:
torsional (stick-slip oscillations),
axial (bit bouncing phenomenon),
lateral (whirl motion due to the out-of-balance of the drillstring).
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Torsional model

The dynamic of the torsional variable θ(t, ξ) along the drillpipe is described by:

GJ
∂2θ

∂ξ2
(t, ξ) − I ∂

2θ

∂t2
(t, ξ) − d∂θ

∂t
(t, ξ) = 0, ξ ∈ (0, L), t ∈ (0,+∞). (1)

with the boundary conditions

GJ
∂θ

∂ξ
(t,0) = ca(

∂θ

∂t
(t,0) −Ω(t)) (2)

GJ
∂θ

∂ξ
(t,L) − Ib

∂2θ

∂t2
(t,L) = −R(∂θ

∂t
(t,L)) (3)

where I is the inertia, G the shear modulus, Ib inertia of the drillpipe, J the geometrical moment of inertia, d the
drillstring damping, and Ω the control input (angular velocity due to the rotary table).
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Axial model

The axial dynamics of the drill string is described by an ordinary differential
equation (ODE) as follows:

m0z̈(t) + c0[ż(t) + u1(t)] + k0z(t) = −µ1R(
∂θ

∂t
(t,L)) (4)

where:
z is defined as z = Z −Υ0t, m0, c0 and k0, denote the mass, damping and spring
constant
Z represents the drill bit axial position.
The dynamical system is controlled through the penetration rate u1(t), which is
an axial speed imposed at the surface, and Υ0 is a constant value.

The coefficient µ1 can be modeled as µ1 = 2
Rbmbitcbit

where Rb is the bit radius, µbit is
the friction coefficient at the bit-rock contact, and cbit is the bit coefficient.
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Coupled torsional-axial model
The coupling between both systems is due to the torque on bit R approximating the
physical phenomena at the bottom given by :

R(∂θ
∂t
(t,L)) = cb

∂θ

∂t
(t,L) +Rnl(

∂θ

∂t
(t,L)) (5)

The term cb
∂θ
∂t (t,L) represents the viscous damping torque which approximates the

influence of the mud drilling and Rnl(∂θ∂t (t,L)) denotes the dry friction torque which
models the bit-rock contact.
Hence, we obtain the next coupled torsional-axial vibrations:

GJ
∂2θ

∂ς2
(t, ς) − I ∂

2θ

∂t2
(t, ς) − d∂θ

∂t
(t, ς) = 0 (6)

GJ
∂θ

∂ς
(t,0) = ca(

∂θ

∂t
(t,0) −Ω(t)) (7)

GJ
∂θ

∂ς
(t,L) + Ib

∂2θ

∂t2
(t,L) = −R(∂θ

∂t
(t,L)) (8)

m0z̈(t) + c0[ż(t) + u1(t)] + k0z(t) = −µ1R(
∂θ

∂t
(t,L)) (9)
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In order to improve clarity, we use the next variable change:

w(t, x) = θ(L
√

I

GJ
t,L(1 − x)), x ∈ (0,1), (10)

Then, we get

∂ttw(t, x) = ∂xxw(t, x) − β∂tw(t, x), x ∈ (0,1) (11)
∂xw(t,1) = u0(t) (12)
∂ttw(t,0) = a∂xw(t,0) + aF (∂tw(t,0)) (13)

z̈(t) = − c0
m0
[ż(t) + u1(t)] −

k0
m0

z(t) + µ1
GJ

m0L
F (∂tw(t,0)) (14)

where
u0(t) = caL

GJ (Ω(t)(t) − 1
L

√
GJ
I ∂tw(t,1)), β = dL

√
1

IGJ ,

F(∂tw(t,0)) = − L
GJR( 1L

√
GJ
I ∂tw(t,0)), a = LI

Ib
.

The controller u0(t) and u1(t) correspond to the angular velocity and the penetration
rate imposed at the top end.
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Well posedness problem

Let T > 0, the solution of the Cauchy problem is written in this form

∂ttw(t, x) = ∂xxw(t, x) − β∂tw(t, x) (15)
∂xw(t,1) = u0(t) (16)
∂ttw(t,0) = a∂xw(t,0) + aF (∂tw(t,0)) (17)

z̈(t) = − c0
m0

ż(t) − c0
m0

u1(t) −
k0
m0

z(t) + µ1
GJ

m0L
F (∂tw(t,0)) (18)

w(0, x) = w0(x), wt(0, x) = w1(x), z(0) = z0, ż(0) = z1 (19)

where x ∈ (0,1), t ∈ (0, T ), w0 ∈ E ∶= {w ∈H1(0,1), w0(0) = 0}, w1 ∈ L2(0,1). z0 and
z1 are the imposed values to the solution at t = 0.
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Let us propose the vector space E which is equipped with the scalar product

< w1(t, x),w2(t, x) >E= ∫
1

0
w1
x(t, x)w2

x(t, x)dx (20)

It is obvious that E is a Hilbert space.
Let us consider Z = (w(t, x),wt(t, x),wt(t,0), z(t), ż)T . Equations (15)-(19) can be
written as

Ż(t) = AZ(t) +H(Z(t)) + f(t) (21)
Z(0) = Z0 (22)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0 0 0

∂xx −λ 0 0 0 0 0 0

g 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −k0
m0

−c0
m0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, H(Z(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

aF (wt(t,0))
0

µ1
GJ
m0L

F (∂tw(t,0))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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and f(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

δ(x − 1)u0(t)
0

0

u1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

for which, g = −a < δ′0(x), . > such that δ denotes the Dirac function,
⟨δ′1(x),w(t, x)⟩ = −wx(t,1) and ⟨δ′0(x),w(t, x)⟩ = −wx(t,0).
Our purpose in this section is to prove the existence and uniqueness of the system
(21)-(22).
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First, let us consider the linear problem of the system (21)-(22) (i.e H(Z) = 0 and
f(t) = 0), we have the next theorem.
Let consider the next space X = {Z ∶ w ∈ E, wt ∈ L2([0,1]), wt(t,0) ∈R, z ∈R, ż ∈R}

Theorem
The operator A generates a C0 semigroup eAt, t ≥ 0 of contractions on X .

In order to prove the existence of unique solution of the system (21)-(22), we need the
next Lemma.

Lemme

Let z(t) ≥ z(0)e−αt such that α =
k0
m0
−

√

∆

2
c0
m0

then

z2(t) − c0
m0
(ż(t))2 + k0

2m0

d

dt
z2(t) ≤ 0
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In order to prove the existence and uniqueness of the nonlinear system (21)-(22) we
introduce the next theorem.

Theorem

Let f ∈ L1([0, T ],X) and Z0 ∈D(A), then the problem Ż(t) = AZ(t) +H(Z) + f(t)
has a unique solution

Z ∈ C1([0, T ],X)⋂C0([0, T ],D(A))

given by:

Z(t) = S(t)Z(0) + ∫
t

0
S(t − s)(H(Z(s)) + f(s))ds



Drillstring Modeling Stability of the controlled coupled system Optimization of the penetration rate Conclusion

11

To prove this Theorem, we need the next lemmas:

Lemme
The nonlinear operator H(Z) is dissipative and locally Lipschitz.

Lemme
For any function f ∈ L1([0, T ],X), and any initial condition Z0 ∈D(A), the problem
(21)-(22) has at most one solution in C1([0, T ],X)⋂C0([0, T ],D(A)).



Drillstring Modeling Stability of the controlled coupled system Optimization of the penetration rate Conclusion

12

Stability of the controlled coupled system

In order to linearize the boundary condition (13), we introduce the next form:

w̄(t, x) = βwr

2
x2 − F (wr)x +wrt +w0 (23)

as a reference trajectory, such that wr = ∂tw̄(t, x).
Then the coupled PDE-ODE (11)-(13) becomes

∂ttw(t, x) = ∂xxw(t, x) − β∂tw(t, x) (24)
∂xw(t,1) = u0(t) (25)
∂ttw(t,0) = a∂xw(t,0) + ab∂tw(t,0) (26)

z̈(t) = − c0
m0

ż(t) − c0
m0

u1(t) −
k0
m0

z(t) + µ1
GJ

m0L
F (∂tw(t,0)) (27)

where u0 and u1 are the control laws, b = ∂F
∂s (wr) and s(t) = ∂tw(t,1).



Drillstring Modeling Stability of the controlled coupled system Optimization of the penetration rate Conclusion

13

Now, we establish the stability of the controlled coupled torsional-axial models.

Theorem
Consider system (24)-(27), and the next both control laws

u0(t) =
1

∂tw(t,1)
[(1 − a)∂tw(t,0)∂xw(t,0) − ab∂tw(t,0)2]

u1(t) = −
k0
c0
z(t) + µ1

GJ

c0L
F (∂tw(t,0))

Then the system (24)-(27) is stable at the equilibrium.
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Neutral type delay coupled torsional-axial vibrations
We suppose that the damping term β (given in (24)) is zero.
Using the d’Alembert’s transformation to the distributed parameter model (24) to a
difference equation model (neutral type delay system). Consequently,
w(t, x) = η(σ) + ν(γ) is the general solution of the unidimensional wave equation (24)
when β = 0, with σ = t + x, γ = t − x. We define

ϱ̇(t) = ∂tw(t,0) = η̇(t) + ν̇(t), (28)

as the angular velocity at the drill pipe bottom extremity. We introduce this into the
boundary conditions (24)-(26), which gives

η̇(t + 1) − ν̇(t − 1) = τ4(t) (29)
η̈(t) + ν̈(t) = a(η̇(t) − ν̇(t)) + ab(η̇(t) + ν̇(t) (30)

Then, we may define the next

ϱ̈(t) = a(b − 1)ϱ̇(t) + a(1 + b)ϱ̇(t − 2) − ϱ̈(t − 2) + 2aτ4(t − 1)
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Now, the coupled torsional-axial dynamic stability is analyzed through

ϱ̈(t) = a(b − 1)ϱ̇(t) + a(1 + b)ϱ̇(t − 2) − ϱ̈(t − 2) + 2aτ4(t − 1)

z̈(t) = −m0

c0
[ż(t) + u1(t)] −

k0
c0
z(t) + µ1

m0GJ

c0L
F (∂tw(t,0))

Let us defines x1 = ϱ, x2 = ϱ̇. Then, we have:

ẋ1(t) = x2(t) (31)
ẋ2(t) = a(b − 1)x2(t) + a(1 + b)x2(t − 2) − ẋ2(t − 2) + 2aτ4(t − 1) (32)

z̈(t) = − c0
m0

ż(t) − c0
m0

u1(t) −
k0
m0

z(t) + µ1
GJ

m0L
F (∂tw(t,0)) (33)
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The main idea is to study the behavior position and displacement of the angular
velocity.

Theorem
Consider system (31)-(33) and the both control laws

τ4(t − 1) = −
1

2a
(x1 + abx2(t) + a(1 + b)x2(t − 2) − ẋ2(t − 2)) (34)

u1(t) = −
k0
m0

z(t) + µ1
GJ

c0L
F (∂tw(t,0)) (35)

Then the zero equilibrium is stable.
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Numerical simulations
The next physical parameters are used in simulation:

Variable Value Description

L 2000 [m] drillstring length

I 0.095 [kg.m] inertia per unit length

Ib 311 [kg.m2] inertia at the drillstring bottom

J 1.19.10−5 [m4] geometrical moment of inertia

ca 2000 [Nm.s.rad−1] sliding torque coefficient

G 79.3.109 [N.m−2] shear modulus

k0 1.55 × 106 [kg.s−2] spring constant

m0 37278 kg mass

c0 16100 kgs−1 damping

µ1 257 [m−1]
Table: Different physical parameters
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Angular position x1(t) ≈ w(t,0) Angular velocity x2(t) = ∂tw(t,0)

Control law u1(t). Control law τ4(t)
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Drilling Models
Drilling parameters measured on the
rig can be naively classified into
control parameters,uncontrollable
parameters, and response
parameters.
Control parameters are drilling
operational parameters which can be
controlled by the drilling engineer on
the rig: WOB, RPM, and flow rate.
Uncontrollable parameters are those
which cannot be changed by
engineers while drilling a well such as
the strength of the rock, geological
properties, maximum pump power.
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The response (or objective) can then be optimized by changing the controllable
parameters. This section shows how the objective functions can be modeled in terms
of controllable and uncontrollable parameters using three different models :

Eckel’s model
Galle and woods model
Regression model
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Coefficient of determination

We should know that there are many criteria for the evaluation of conceptual models
that we build such as :

The multiple coefficient of determination,
root mean squared error ,
residual diagnostics and goodness of fit tests. . .

In our work, we use the multiple coefficient of determination.This variable is given
by the next equation:

R2 = 1 −
n

∑
k=0

(y − ŷ)2
(y − ȳ)2

where :
y:The actual output
ŷ :The output given by the model.
ȳ :The actual output mathematical average.
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Coefficient of determination

The score here is the R2 score, which measures how well a model performs relative to
a simple mean of the target values.

R2 = 1 indicates a perfect match,
R2 = 0 indicates the model does no better than simply taking the mean of the
data, and negative values mean even worse models.
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Data base

Figure: Data base
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Eckel’s model

The Eckel’s model is described as following :

ROP = aWOBbRPM c

Where a, b and c are constants.
ROP: forward speed (m / hr).
WOB: the weight on the tool.
RPM: the speed of rotation.
a, b, c: the coefficients depending on the training
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Using the least squared method then we are Searching for the minimum of the
expression by deriving the least squares prescription (S)

S = log(a.WOBb.RPM c)

We calculate the coefficients of Eckel’s equation using the least squares method.Then
we obtain:

a = 0.032
b = 1.56
c = 0.283

Consequently, Eckel’s model is given by the following equation :

ROP = 0.0.32WOB1.56RPM0.283
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Figure: Predicted ROP vs Measured ROP

We observe in there is a clear
improvement in penetration speed when
the weight on the tool is optimum and
optimum rotational speed are used.Using
a created python based program
predicted ROP is 13.45% higher than the
real ROP in other words the Predicted
ROP will take less time to reach the
depth predicted as the actual ROP.
Moreover Eckel’s model gives a
determination coefficient equal to
R2 = 0.0246
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Galle And Wood’s model
Galle and Woods (1963) were also among the first to examine the influence of the
optimal constant bit weight and rotational speed for the lowest cost, as well as
create mathematical relationships.
To identify the optimal combinations of constant weight and rotation speed,
graphs and processes for field applications were created.
They assumed a relationship between the wear rate and the inverse ratio of bit
weight to bit diameter as a function of time.
They also presented an equation that relates tooth wear rate to rotational speed
for milled tooth bits suited for soft formations alone.

Hence, the model is described as following:

ROP = Cf
(WOBkRPMα)

ap
(36)
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The value of the weight exponent k is related with the type of the formation: 0.6
for very soft formation and 1.5 for a hard one
k = 0.8: a constant linked to the nature of the drilled formation.
α = 0.4: can vary from 0.4 in hard terrains to 0.8 in soft soils
For Cf = 0.37518: we can determinate it using the data base and the equation (2)
Cf is the unknown variable and we extract the other variable from our data base .
The adopted model was used to calculate the penetration rate at each point of
data and the calculated ROP was plotted against the ROP measured , the
coefficient of determination

R2 = 0.2204
which indicates that the Galle Woods model gives a better results compared to
the Eckel’s.
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Regression model

The problem that arises for the engineer is the following. He has a set of
measurements of variables of a process of any kind (physical, chemical, economic,
financial, ...), and the result of this process.
He assumes that there is a deterministic relation between these variables and
this result, and he looks for a mathematical form of this relation.
According to the point cloud, the forward speed can take the following form:

ROP = a + bWOB + cRPM + dWOB2 + eRPM2 (37)

Where a, b, c, d and e are constants.
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We can calculate the coefficients of the regression equation using the least
method squares and we re-inject the parameters applied in the equation (29) to
calculate the forward speed from the model in order to test its accuracy.

ROP = 2863.6 + 93.3WOB − 62.57RPM − 1.702WOB2 + 0.317RPM2(3)

The adopted model was used to calculate the penetration rate at each point of
data,
The coefficient of determination

R2 = 0.8316

which indicates that the ROP model gives good results
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Best model

At the same interval, we must apply the three models designated above(Eckel’s
model, Galle and wood model and the regression model) so as to determine the
most suitable model.
The multiple coefficient of determination R2 can be classified as numerical
indicators to define an optimal model.
We put the result of interval [2170ft, 2260ft] in a table to facilitate the choice of
the model.

Table: Comparaison of three models.

ECKEL Model Galle and wood Model Regression Model

R2 = 0.0246 R2 = 0.2204 R2 = 0.8316
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Conclusion

A new neutral coupled time-delay torsional-axial system has been introduced
We offer a method for optimizing drilling mechanical parameters.
The recommended optimization models are regression models that allow for the
modification of drilling parameters depending on the type of the formations to be
penetrated in order to maximize penetration rate.
To the performance of automatic drilling applications it is necessary some
variables such that the downhole pressure need to be estimated.
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