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Review of classical tools in shape / topology optimization
Shape derivative: consider a displacement x ∈ Ω 7→ x + θ(x)

J((Id + θ)(Ω))− J(Ω) =

ˆ
∂Ω

gSθ · n + o(‖θ‖W 1,∞(Rd ,Rd ))

Topological derivative: consider a small topology perturbation,

typically Ωε = Ω \ B(z , ε) and an expansion like

J(Ωε)− J(Ω) = εdgT (z) + o(εd)

Shape vs topology perturbation

Homogenization: incorporate intermediate (anisotropic)
materials, obtained by ”mixing” the strong and weak (≈ void)
phases  existence of optimal designs.
Simplification: interpolation (e.g. SIMP)
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Perimeter penalization in topology optimization

What for?

I To control the complexity of domains.

I To enforce the existence of optimal shapes
because BV (D) ↪→ L1(D) is compact.

I To model surface tensions.

Difficulty

I The perimeter is differentiable w.r.t. smooth shape variations
(shape derivative = mean curvature).

I For a topology perturbation of form Ωε = Ω \ B(z , ε),
Ω ⊂ Rd , the perimeter varies like εd−1, while usual cost
functions vary like εd (no topological derivative).
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Perimeter in the sense of geometric measure theory

Let D ⊂ Rd , open, bounded,

Ω ⊂ D.

Ω
∂∗Ω ∩D

The relative perimeter of Ω in D is the Hausdorff measure

PerD(Ω) = Hd−1(∂∗Ω ∩ D),

where ∂∗Ω is the essential boundary of Ω (points of density
different from 0 and 1  ∂∗Ω ⊂ ∂Ω).

We also have:

PerD(Ω) =

ˆ
D
|DχΩ| = sup

{ˆ
Ω
divϕ,ϕ ∈ C1

c (D,Rd), ‖ϕ‖∞ ≤ 1

}
,

PerD(Ω) <∞ ⇔ χΩ ∈ BV (D): set of finite perimeter.
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Perimeter approximation by Γ-convergence

Γ-convergence (De Giorgi-Franzoni, 1975)

Definition
Let Fn,F : X → R, X metric space.

One says that Fn
Γ−→ F at x ∈ X iif

1. ∀xn → x , F (x) ≤ lim inf Fn(xn),

2. ∃yn → x , F (x) ≥ lim supFn(yn).

Theorem
Suppose that

1. Fn
Γ−→ F in X ,

2. Fn(xn) ≤ infX Fn + εn, εn → 0,

3. xn → x .

Then x is a minimizer of F and limFn(xn) = F (x).
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Remarks

I The convergence of (xn) is usually obtained from an
equicoercivity argument:

sup{Fn(xn)} <∞⇒ (xn) is compact.

This property may be as difficult to prove as the
Γ-convergence.

I If Fn
Γ−→ F and G is continuous then

Fn + G
Γ−→ F + G .

I The Γ-convergence does not imply the pointwise convergence
Fn(x)→ F (x).
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A classical (local) perimeter approximation: the Van
Der Waals-Cahn-Hiliard functional

For a potential W : R → R+

with wells 0 and 1 define

Fε(u) =

ˆ
D
ε|∇u|2 +

1

ε
W (u).

0 1

W

u: density / phase field

Theorem (Modica-Mortola, 1977)

When ε→ 0 we have the Γ-convergence

Γ− limFε(u) =

{
cPerD({u = 1}) if u ∈ BV (D, {0, 1})
+∞ otherwise

in L1(D), with c =
´ 1

0

√
W (t)dt.
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Advantages

I Approximation of the perimeter in the appropriate sense for
optimization.

I Intermediate densities are penalized
 possible combination with relaxation / interpolation
methods

Drawbacks

I The functional does not accept characteristic functions.

I The derivative w.r.t. u involves −∆u. Hence optimization by
an explicit gradient method in L2 may be very slow for fine
grids (CFL condition).
Using an H1 scalar product raises difficulties for projecting
onto {u ≥ 0}.

These drawbacks stem from the term ∇u.
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A non-local perimeter approximation
For all u ∈ L∞(D, [0, 1]) consider Lεu := vε the smoothed version
of u by {

−ε2∆vε + vε = u in D,
∂nvε = 0 on ∂D,

and define

F̃ε(u) :=
1

ε

ˆ
D
Lεu(1− u) =

1

ε

ˆ
D

(1− Lεu)u.

We have in particular

F̃ε(χΩ) =
1

ε

ˆ
D

(LεχΩ)χD\Ω.

Example in 1d

D = (−1, 1), Ω = (0, 1)
One finds

lim
ε→0

F̃ε(χΩ) =
1

2
=

1

2
PerD(Ω).

χD\Ω LεχΩ

−1 0 1
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Theorem (Γ-convergence and equicoercivity)

(i) When ε→ 0 one has in L1(D, [0, 1])

Γ− lim F̃ε(u) =

{
1
2 PerD({u = 1}) if u ∈ BV (D, {0, 1})
+∞ otherwise.

(ii) If supε>0 F̃ε(uε) <∞ then (uε) is compact in L1(D, [0, 1]).

Remarks

I We have the variational formulation

F̃ε(u) = inf
v∈H1(D)

{
ε‖∇v‖2

L2(D) +
1

ε

(
‖v‖2

L2(D) +

ˆ
D
u(1− 2v)

)}
.

I In both expressions there is no ∇u.

I One also has the pointwise convergence F̃ε(χΩ)→ 1
2 PerD(Ω).

Variant: heat kernel (Merriman-Bence-Osher, Miranda-Pallara-
Paronnetto-Preunkert, Esedoglu-Otto), no variational form
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Solution of topology optimization problems with perimeter
penalization

Let J̃ : L1(D, [0, 1])→ R be continuous and bounded from below,

I := inf
Ω⊂D

{
J̃(χΩ) +

α

2
PerD(Ω)

}
,

Iε := inf
u∈L∞(D,[0,1])

{
J̃(u) + αF̃ε(u)

}
.

Γ-convergence and equicoercivity yield:

Theorem
Let uε be an approximate minimizer of Iε, i.e.

J̃(uε) + αF̃ε(uε) ≤ Iε + λε, λε → 0.

Then J̃(uε) + αF̃ε(uε)→ I .
Moreover, (uε) admits cluster points, and if u is a cluster point
then u = χΩ where Ω is a minimizer of I .
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Bonus: convergence of derivatives

DF̃ε(u)h =
1

ε

ˆ
D

(1− 2Lεu)h =:

ˆ
D
gu,εh

Theorem
Let Ω ⊂ D and x ∈ ∂Ω ∩ D such that ∂Ω is smooth around x .
Then

gχΩ,ε(x)→ 1

2
κ(x)

with κ(x) the mean curvature of ∂Ω at x (shape derivative of the
perimeter).
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Examples
Conductivity maximization γΩ = γ0χD\Ω + γ1χΩ

J(χΩ) =

ˆ
ΓN

gT + `|Ω|,
{
−div(γΩ∇T ) = 0 in D
γΩ∇T .n = g on ΓN

We use the dual formulation of the thermal compliance

ˆ
ΓN

gT = inf
− divτ=0
τ.n=g

ˆ
D
γ−1

Ω |τ |2.

Optimization: relaxation + alternating algorithm based on

Iε = inf
u∈L∞(D,[0,1])

inf
v∈H1(D)

inf
− divτ=0
τ.n=g

{ˆ
D

(γ0(1− u) + γ1u)−1|τ |2

+ `

ˆ
D
u + α

[
ε‖∇v‖2

L2(D) +
1

ε

(
‖v‖2

L2(D) + 〈u, 1− 2v〉
)]}

.
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• Minimization w.r.t. τ amounts to solving the conductivity
problem with γu = γ0(1− u) + γ1u.
• Minimization w.r.t. u is given by

u =


1 if `+

α

2ε
(1− 2v) ≤ 0,

P[0,1]

(√
|τ |2

(γ1 − γ0)
(
`+ α

2ε(1− 2v)
) − γ0

γ1 − γ0

)
else.

We consider a decreasing sequence (εk) from εmax ≈ diam(D) to
εmin ≈ h.

Optimal heater for α = 0.1, 0.5, 2, respectively

(γ1 = 1, γ0 = 10−3).
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Compliance minimization in linear elasticity
Isotropic Hooke’s tensor AΩ = χD\ΩA0 + χΩA1 , A0 ≈ 0

J(χΩ) =

ˆ
ΓN

g · y + `|Ω|,
{
−div(AΩ∇sy) = 0 in D
AΩ∇sy .n = g on ΓN

Relaxation ⇒ homogenization (compliance in 2d  rank 2
laminates)

Ĩε = inf
u∈L∞(D,[0,1])

inf
v∈H1(D)

inf
−divσ=0
σn=g

{ˆ
D
A−1

1 σ : σ +
1− u

u
f ∗(σ)

+ `

ˆ
D
u + α

[
ε‖∇v‖2

L2(D) +
1

ε

(
‖v‖2

L2(D) + 〈u, 1− 2v〉
)]}

Lamination formulas  f ∗(σ) explicit

• Minimization w.r.t. σ ⇔ find optimal material (standard
homogenization, explicit)+ solve (anisotropic) elasticity system.
• Minimization w.r.t. u is again explicit.
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Cantilever for α = 0.1, 2, 20, 50, respectively.

Remark: boundary artefacts due to relative perimeter!
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Case of unknown relaxation
We can use a level-set representation.

Ωψ = {x ∈ D, ψ(x) > 0}
to solve the necessary optimality conditions:{

gT ≥ 0 in Ωψ (topology)
gS = 0 on ∂Ωψ ∩ D (geometry)

We can construct an approximation (close to SIMP!), then
normalize:

gδ −→
δ→0

{
gT in Ωψ

gS on ∂Ωψ ∩ D,
ḡδ =

gδ
‖gδ‖L2(D)

.

We perform damped fixed point iter-
ations on the unit sphere of L2(D):

ψk+1 = Cκ(ψk , ḡδ(ψk))

where κ is found by line search (de-
scent direction).

ψk

ψk+1

ḡδ(ψk)

κ
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Example: optimal design of microstructures

Goal: optimize the Representative Volume Element to obtain
desired homogenized properties (periodic model)

Poisson ratio minimization without (left) and with (right) perimeter

penalization ( periodic boundary condition, isotropy constraint).
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Variant: total perimeter

PerT (Ω) := Hd−1(∂∗Ω)

=

ˆ
Rd

|DχΩ| = sup

{ˆ
D
χΩ divϕ,ϕ ∈ C1(D̄,Rd), ‖ϕ‖∞ ≤ 1

}
.

It suffices to replace the Neumann boundary condition in Lε by a
Robin one: {

−ε2∆vε + vε = u in D,
ε∂nvε + vε = 0 on ∂D.

Example: compliance minimization (level-set method)

Compliance minimization with relative (left) and total (right)

perimeter penalization.
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The same works in 3d

3d cantilever: without perimeter (top),

with relative perimeter (left), with total perimeter (right)

The 3d perimeter does not like plates!
Other geometric criteria may be of interest.
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Numerical convergence

Original shape

Regularized shape

Original shape

Regularized shape

left: relative perimeter, right: total perimeter
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Videos

Again the level set method, while ε is decreased...

• Perimeter minimization under volume constraint (projection /
bisection)
Square with relative perimeter
Square with total perimeter

• Compliance minimization under volume constraint
Cantilever with relative perimeter
Cantilever with total perimeter

• Poisson ration minimization
Negative Poisson ratio with periodic perimeter
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Extension: minimal partitions with interface energies
D = Ω1 ∪ · · · ∪ ΩN

Γij = ∂∗Ωi ∩ ∂∗Ωj

Goal: minimize

∑
i

ˆ
Ωi

gi +
∑
i<j

αijHd−1(Γij ∩ D)

Ωi

Ωj

Γij

We have the pointwise approximation

Hd−1(Γij ∩ D) =
1

2

[
Hd−1(∂∗Ωi ∩ D) +Hd−1(∂∗Ωj ∩ D)

−Hd−1(∂∗(Ωi ∪ Ωj) ∩ D)
]

= lim
ε→0

[
F̃ε(χΩi

) + F̃ε(χΩj
)− F̃ε(χΩi

+ χΩj
)
]

· · · = lim
ε→0

2

ε

ˆ
D
LεχΩi

χΩj
.

Questions: Γ-convergence? variational formulation?
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Preliminary condition: lower semicontinuity

Theorem (Ambrosio-Braides, 1990)

The triangle inequality

(T ) αij ≤ αik + αkj ∀i , j , k .

is necessary and sufficient for the functional

F : (Ω1, ...,ΩN) 7→
∑
i<j

αijHd−1(Γij ∩ D)

to be lower semicontinuous (w.r.t. convergence in measure).

αred/green > αred/blue+αgreen/blue

⇒ lack of lower semicontinuity
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Γ-convergence
The work space is

S =

{
(u1, · · · , uN) ∈ L1(D, [0, 1])N :

N∑
i=1

ui = 1

}
.

Γ-convergence can be proven under different sets of assumptions,
in particular:

Theorem
If D is a Cartesian product of intervals, condition (T) implies the
Γ-convergence of the functional

(u1, · · · , uN) ∈ S 7→ 1

ε

∑
i<j

αij

ˆ
D
Lεui uj .
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Convexity issues
Consider the symmetric matrix Q = (αij).

Definition
We say that Q is conditionally negative semidefinite (Q � 0) if∑

ij

αijξiξj ≤ 0 ∀ξ ∈ RN :
∑
i

ξi = 0.

Theorem
If N ≤ 4 and (T ) is fulfilled, then Q � 0.
If Q � 0 then Iε is concave on

V :=

{
u ∈ L2(D,RN) :

N∑
i=1

ui = 1

}
.

Consequence: Legendre duality

−Iε + δV = (−Iε + δV )∗∗
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This leads to the variational formulation

Iε(u) = inf∑
i vi=1

1

ε

∑
i ,j

αij

(
〈ui , vj〉 −

1

2
ε2〈∇vi ,∇vj〉 −

1

2
〈vi , vj〉

)
.

For minimizing
∑

i

´
D giui + Iε(u) we again suggest alternating

minimizations:

I vi = Lεui
I explicit (linear spatially separated) minimization w.r.t. u.

Remark: If Q � 0 (general case by additive decomposition) we
obtain by another duality scheme

Iε(u) =
1

ε
inf

τ∈[Hdiv
0 (Ω)]N

N∑
i ,j=1

αij

ˆ
Ω
τi · τjdx

+
N∑

i ,j=1

αij

ˆ
Ω

(ui − ε divτi )(uj − εdivτj)dx .
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Example
Given a partition (E0,E1, ...,EN) set gi = 1− χEi

: phase i is
favoured in Ei , i ≥ 1.

Partition with 4 phases: data Ei (left), obtained result for αij = 1 ∀i , j
(middle), obtained result for αij = 1 if Ei and Ej are adjacent and αij = 2

otherwise (right)
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Volume constraints
We consider the constraintsˆ

D
uidx = mi ∀i = 1, ...,N.

The minimization w.r.t. u is spatially coupled: it yields a linear
programming subproblem of form

min∑N
i=1 ui=1

ui≥0,
´

Ω uidx=mi

Λ(u) =
N∑
i=1

ˆ
Ω
ζiuidx .

Since N is small compared with the number of pixels and the
unconstrained problem is straightforward we consider the
Lagrangian dual criterion

D(λ) = inf∑N
i=1 ui=1

ui≥0

Λ(u) +
N∑
i=1

λi

(ˆ
Ω
uidx −mi

)

=

ˆ
Ω

min{(ζi + λi )
N
i=1} −

N∑
i=1

λimi .
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Theorem
The N-tuple (λ1, . . . , λN) is a maximizer of D if and only if each
λi is a maximizer of the partial function

λ̃i 7→ D(λ1, . . . , λi−1, λ̃i , λi+1, . . . , λN).

This is also equivalent to satisfying for each i = 1, . . . ,N

|{λi < min
j 6=i

(ζj + λj)− ζi}| ≤ mi ≤ |{λi ≤ min
j 6=i

(ζj + λj)− ζi}|.

Conclusion: alternating maximizations can be used at the cost of
sorting pixels at each iteration.
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Examples

Partition with 5 phases and volume constraints:
initialization (top left), result for αij = 1 ∀i , j (top middle),

result for αint/int = 1 and αint/ext = 0.5 (top right),
result for αint/int = 1 and αint/ext = 2 (bottom left),

same case with εmax large (bottom right).
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Verification of Herring’s theoretical angles

(generalization of the Fermat point).

Partition of 3 liquid phases + vapor + solid (fixed):
initialization (left), result for αij = 1 ∀i , j (center),

result for αLL = 0.5, αLS = 1, αLV = αSV = 2 (right).
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Anisotropic perimeter

Let K be a closed, bounded, convex subset of Rd . To simplify the
presentation we assume int K 6= ∅. Define

Perρ,KD (Ω) =

ˆ
∂∗Ω∩D

ρ(x)σK (ν)dHd−1,

F̃ε(u) := inf
v∈H1(D)

ερ2σ2
K (∇v) +

1

ε

(
v2 + u(1− 2v)

)
.

σK : support function of K ; ν : inner normal

Theorem
When ε→ 0 one has in L1(D, [0, 1])

Γ− lim F̃ε(u) =

{
1
2 Perρ,KD ({u = 1}) if u ∈ BV (D, {0, 1})
+∞ otherwise.
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Application: unsupervised image classification
We take K as an ellipse  linear PDE
Original image f → segmented image w =

∑
i uici

by minimizing ‖w − f ‖2
L2 +

α

2

N∑
i=1

Perρ,KD (Ωi ).

Original image (top), 3 phase classification with isotropic perimeter
(left), 3 phase classification with anisotropic perimeter (right)

K is the ellipse of center 0 and axes 100 - 1.
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Nonlinear case
Consider the segment

K = {t~k ,−β ≤ t ≤ α}. 0
We use proximal splitting.

α = 1, β = 0.1 α = 1, β = 1 α = 1, β = 0.1 α = 1, β = 1
~k = (0, 1) ~k = (0, 1) ~k = (cos π3 , sin π

3 ) ~k = (cos π3 , sin π
3 )

Sets minimizing the anisotropic perimeter given by a segment

Perspective:
Penalization of vertical downward nor-
mals (overhangs) for the design of 3D
printed parts.

K
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