# Variational approximation of interface energies for topology optimization and optimal partitioning 

Samuel Amstutz<br>CMAP - Ecole Polytechnique<br>\& LMA - Université d'Avignon<br>with the collaboration of

A. Alavizadeh, B. Bogosel, C. Dapogny, A. Ferrer, D. Gourion, A.A. Novotny, N. Van Goethem, M. Zabiba
CNAP
$X$ |ARKEMA $\mid X$
DESIGN AND MODELING OF INNOVATIVE MATERIALS


Control Theory and Inverse Problems, Monastir, May 2023

## Review of classical tools in shape / topology optimization

$\sum$ Shape derivative: consider a displacement $x \in \Omega \mapsto x+\theta(x)$

$$
J((I d+\theta)(\Omega))-J(\Omega)=\int_{\partial \Omega} g_{S} \theta \cdot n+o\left(\|\theta\|_{W^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}\right)
$$

$\sum$ Topological derivative: consider a small topology perturbation, typically $\Omega_{\varepsilon}=\Omega \backslash \overline{B(z, \varepsilon)}$ and an expansion like

$$
J\left(\Omega_{\varepsilon}\right)-J(\Omega)=\varepsilon^{d} g_{T}(z)+o\left(\varepsilon^{d}\right)
$$



Shape vs topology perturbation
そ Homogenization: incorporate intermediate (anisotropic) materials, obtained by "mixing" the strong and weak ( $\approx$ void) phases $\rightsquigarrow$ existence of optimal designs.
Simplification: interpolation (e.g. SIMP)

## Perimeter penalization in topology optimization

## What for?

- To control the complexity of domains.
- To enforce the existence of optimal shapes because $B V(D) \hookrightarrow L^{1}(D)$ is compact.
- To model surface tensions.



## Difficulty

- The perimeter is differentiable w.r.t. smooth shape variations (shape derivative $=$ mean curvature).
- For a topology perturbation of form $\Omega_{\varepsilon}=\Omega \backslash \overline{B(z, \varepsilon)}$, $\Omega \subset \mathbb{R}^{d}$, the perimeter varies like $\varepsilon^{d-1}$, while usual cost functions vary like $\varepsilon^{d}$ (no topological derivative).


## Perimeter in the sense of geometric measure theory

Let $D \subset \mathbb{R}^{d}$, open, bounded, $\Omega \subset D$.


The relative perimeter of $\Omega$ in $D$ is the Hausdorff measure

$$
\operatorname{Per}_{D}(\Omega)=\mathcal{H}^{d-1}\left(\partial^{*} \Omega \cap D\right),
$$

where $\partial^{*} \Omega$ is the essential boundary of $\Omega$ (points of density different from 0 and $1 \rightsquigarrow \partial^{*} \Omega \subset \partial \Omega$ ).

We also have:
$\operatorname{Per}_{D}(\Omega)=\int_{D}\left|D \chi_{\Omega}\right|=\sup \left\{\int_{\Omega} \operatorname{div} \varphi, \varphi \in \mathcal{C}_{c}^{1}\left(D, \mathbb{R}^{d}\right),\|\varphi\|_{\infty} \leq 1\right\}$,
$\operatorname{Per}_{D}(\Omega)<\infty \Leftrightarrow \chi_{\Omega} \in B V(D)$ : set of finite perimeter.

## Perimeter approximation by Г-convergence

## 「-convergence (De Giorgi-Franzoni, 1975)

## Definition

Let $F_{n}, F: X \rightarrow \mathbb{R}, X$ metric space.
One says that $F_{n} \xrightarrow{\Gamma} F$ at $x \in X$ iif

1. $\forall x_{n} \rightarrow x, F(x) \leq \liminf F_{n}\left(x_{n}\right)$,
2. $\exists y_{n} \rightarrow x, F(x) \geq \limsup F_{n}\left(y_{n}\right)$.

Theorem
Suppose that

1. $F_{n} \xrightarrow{\Gamma} F$ in $X$,
2. $F_{n}\left(x_{n}\right) \leq \inf _{X} F_{n}+\varepsilon_{n}, \varepsilon_{n} \rightarrow 0$,
3. $x_{n} \rightarrow x$.

Then $x$ is a minimizer of $F$ and $\lim F_{n}\left(x_{n}\right)=F(x)$.

## Remarks

- The convergence of $\left(x_{n}\right)$ is usually obtained from an equicoercivity argument:

$$
\sup \left\{F_{n}\left(x_{n}\right)\right\}<\infty \Rightarrow\left(x_{n}\right) \text { is compact. }
$$

This property may be as difficult to prove as the $\Gamma$-convergence.

- If $F_{n} \xrightarrow{\Gamma} F$ and $G$ is continuous then

$$
F_{n}+G \xrightarrow{\ulcorner } F+G .
$$

- The $\Gamma$-convergence does not imply the pointwise convergence $F_{n}(x) \rightarrow F(x)$.

A classical (local) perimeter approximation: the Van Der Waals-Cahn-Hiliard functional
For a potential $W: \mathbb{R} \rightarrow \mathbb{R}_{+}$ with wells 0 and 1 define
$F_{\varepsilon}(u)=\int_{D} \varepsilon|\nabla u|^{2}+\frac{1}{\varepsilon} W(u)$.

$u$ : density / phase field
Theorem (Modica-Mortola, 1977)
When $\varepsilon \rightarrow 0$ we have the $\Gamma$-convergence

$$
\Gamma-\lim F_{\varepsilon}(u)= \begin{cases}\operatorname{cPer}_{D}(\{u=1\}) & \text { if } u \in B V(D,\{0,1\}) \\ +\infty & \text { otherwise }\end{cases}
$$

in $L^{1}(D)$, with $c=\int_{0}^{1} \sqrt{W(t)} d t$.

## Advantages

- Approximation of the perimeter in the appropriate sense for optimization.
- Intermediate densities are penalized
$\rightsquigarrow$ possible combination with relaxation / interpolation methods


## Drawbacks

- The functional does not accept characteristic functions.
- The derivative w.r.t. $u$ involves $-\Delta u$. Hence optimization by an explicit gradient method in $L^{2}$ may be very slow for fine grids (CFL condition).
Using an $H^{1}$ scalar product raises difficulties for projecting onto $\{u \geq 0\}$.
These drawbacks stem from the term $\nabla u$.


## A non-local perimeter approximation

For all $u \in L^{\infty}(D,[0,1])$ consider $L_{\varepsilon} u:=v_{\varepsilon}$ the smoothed version of $u$ by

$$
\begin{cases}-\varepsilon^{2} \Delta v_{\varepsilon}+v_{\varepsilon}=u & \text { in } D \\ \partial_{n} v_{\varepsilon}=0 & \text { on } \partial D\end{cases}
$$

and define

$$
\tilde{F}_{\varepsilon}(u):=\frac{1}{\varepsilon} \int_{D} L_{\varepsilon} u(1-u)=\frac{1}{\varepsilon} \int_{D}\left(1-L_{\varepsilon} u\right) u
$$

We have in particular

$$
\tilde{F}_{\varepsilon}\left(\chi_{\Omega}\right)=\frac{1}{\varepsilon} \int_{D}\left(L_{\varepsilon} \chi_{\Omega}\right) \chi_{D \backslash \Omega} .
$$

Example in 1d
$D=(-1,1), \Omega=(0,1)$
One finds
$\lim _{\varepsilon \rightarrow 0} \tilde{F}_{\varepsilon}\left(\chi_{\Omega}\right)=\frac{1}{2}=\frac{1}{2} \operatorname{Per}_{D}(\Omega)$.


## Theorem ( $\Gamma$-convergence and equicoercivity)

(i) When $\varepsilon \rightarrow 0$ one has in $L^{1}(D,[0,1])$

$$
\Gamma-\lim \tilde{F}_{\varepsilon}(u)= \begin{cases}\frac{1}{2} \operatorname{Per}_{D}(\{u=1\}) & \text { if } u \in B V(D,\{0,1\}) \\ +\infty & \text { otherwise }\end{cases}
$$

(ii) If $\sup _{\varepsilon>0} \tilde{F}_{\varepsilon}\left(u_{\varepsilon}\right)<\infty$ then $\left(u_{\varepsilon}\right)$ is compact in $L^{1}(D,[0,1])$. Remarks

- We have the variational formulation

$$
\tilde{F}_{\varepsilon}(u)=\inf _{v \in H^{1}(D)}\left\{\varepsilon\|\nabla v\|_{L^{2}(D)}^{2}+\frac{1}{\varepsilon}\left(\|v\|_{L^{2}(D)}^{2}+\int_{D} u(1-2 v)\right)\right\}
$$

- In both expressions there is no $\nabla u$.
- One also has the pointwise convergence $\tilde{F}_{\varepsilon}\left(\chi_{\Omega}\right) \rightarrow \frac{1}{2} \operatorname{Per}_{D}(\Omega)$.

Variant: heat kernel (Merriman-Bence-Osher, Miranda-Pallara-Paronnetto-Preunkert, Esedoglu-Otto), no variational form

## Solution of topology optimization problems with perimeter

 penalizationLet $\tilde{J}: L^{1}(D,[0,1]) \rightarrow \mathbb{R}$ be continuous and bounded from below,

$$
\begin{aligned}
I & :=\inf _{\Omega \subset D}\left\{\tilde{J}\left(\chi_{\Omega}\right)+\frac{\alpha}{2} \operatorname{Per}_{D}(\Omega)\right\} \\
I_{\varepsilon} & :=\inf _{u \in L^{\infty}(D,[0,1])}\left\{\tilde{J}(u)+\alpha \tilde{F}_{\varepsilon}(u)\right\} .
\end{aligned}
$$

$\Gamma$-convergence and equicoercivity yield:
Theorem
Let $u_{\varepsilon}$ be an approximate minimizer of $I_{\varepsilon}$, i.e.

$$
\tilde{J}\left(u_{\varepsilon}\right)+\alpha \tilde{F}_{\varepsilon}\left(u_{\varepsilon}\right) \leq I_{\varepsilon}+\lambda_{\varepsilon}, \quad \lambda_{\varepsilon} \rightarrow 0 .
$$

Then $\tilde{J}\left(u_{\varepsilon}\right)+\alpha \tilde{F}_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow I$.
Moreover, $\left(u_{\varepsilon}\right)$ admits cluster points, and if $u$ is a cluster point then $u=\chi_{\Omega}$ where $\Omega$ is a minimizer of $I$.

Bonus: convergence of derivatives

$$
D \tilde{F}_{\varepsilon}(u) h=\frac{1}{\varepsilon} \int_{D}\left(1-2 L_{\varepsilon} u\right) h=: \int_{D} g_{u, \varepsilon} h
$$

Theorem
Let $\Omega \subset D$ and $x \in \partial \Omega \cap D$ such that $\partial \Omega$ is smooth around $x$. Then

$$
g_{\chi_{\Omega}, \varepsilon}(x) \rightarrow \frac{1}{2} \kappa(x)
$$

with $\kappa(x)$ the mean curvature of $\partial \Omega$ at $x$ (shape derivative of the perimeter).

## Examples

Conductivity maximization

$$
\gamma_{\Omega}=\gamma_{0} \chi_{D \backslash \Omega}+\gamma_{1} \chi_{\Omega}
$$

$$
J\left(\chi_{\Omega}\right)=\int_{\Gamma_{N}} g T+\ell|\Omega|, \quad \begin{cases}-\operatorname{div}\left(\gamma_{\Omega} \nabla T\right)=0 & \text { in } D \\ \gamma_{\Omega} \nabla T . n=g & \text { on } \Gamma_{N}\end{cases}
$$

We use the dual formulation of the thermal compliance

$$
\int_{\Gamma_{N}} g T=\inf _{\substack{\operatorname{div} \tau=0 \\ \tau . n=g}} \int_{D} \gamma_{\Omega}^{-1}|\tau|^{2}
$$

Optimization: relaxation + alternating algorithm based on

$$
\begin{aligned}
I_{\varepsilon} & =\inf _{u \in L^{\infty}(D,[0,1])} \inf _{v \in H^{1}(D)} \inf _{\substack{\operatorname{div} \tau=0 \\
\tau . n=g}}\left\{\int_{D}\left(\gamma_{0}(1-u)+\gamma_{1} u\right)^{-1}|\tau|^{2}\right. \\
& \left.+\ell \int_{D} u+\alpha\left[\varepsilon\|\nabla v\|_{L^{2}(D)}^{2}+\frac{1}{\varepsilon}\left(\|v\|_{L^{2}(D)}^{2}+\langle u, 1-2 v\rangle\right)\right]\right\} .
\end{aligned}
$$

- Minimization w.r.t. $\tau$ amounts to solving the conductivity problem with $\gamma_{u}=\gamma_{0}(1-u)+\gamma_{1} u$.
- Minimization w.r.t. $u$ is given by

$$
u=\left\{\begin{array}{l}
1 \text { if } \ell+\frac{\alpha}{2 \varepsilon}(1-2 v) \leq 0, \\
P_{[0,1]}\left(\sqrt{\frac{|\tau|^{2}}{\left(\gamma_{1}-\gamma_{0}\right)\left(\ell+\frac{\alpha}{2 \varepsilon}(1-2 v)\right)}}-\frac{\gamma_{0}}{\gamma_{1}-\gamma_{0}}\right) \text { else. }
\end{array}\right.
$$

We consider a decreasing sequence $\left(\varepsilon_{k}\right)$ from $\varepsilon_{\max } \approx \operatorname{diam}(D)$ to $\varepsilon_{\text {min }} \approx h$.


Optimal heater for $\alpha=0.1,0.5,2$, respectively

$$
\left(\gamma_{1}=1, \gamma_{0}=10^{-3}\right)
$$

Compliance minimization in linear elasticity
Isotropic Hooke's tensor $A_{\Omega}=\chi_{D \backslash \Omega} A_{0}+\chi_{\Omega} A_{1}, \quad A_{0} \approx 0$

$$
J\left(\chi_{\Omega}\right)=\int_{\Gamma_{N}} g \cdot y+\ell|\Omega|, \quad \begin{cases}-\operatorname{div}\left(A_{\Omega} \nabla^{s} y\right)=0 & \text { in } D \\ A_{\Omega} \nabla^{s} y \cdot n=g & \text { on } \Gamma_{N}\end{cases}
$$

Relaxation $\Rightarrow$ homogenization (compliance in 2d $\rightsquigarrow$ rank 2 laminates)

$$
\begin{aligned}
\tilde{I}_{\varepsilon}= & \inf _{u \in L^{\infty}(D,[0,1])} \inf _{v \in H^{1}(D)} \inf _{\substack{\operatorname{div} \sigma=0 \\
\sigma n=g}}\left\{\int_{D} A_{1}^{-1} \sigma: \sigma+\frac{1-u}{u} f^{*}(\sigma)\right. \\
& \left.+\ell \int_{D} u+\alpha\left[\varepsilon\|\nabla v\|_{L^{2}(D)}^{2}+\frac{1}{\varepsilon}\left(\|v\|_{L^{2}(D)}^{2}+\langle u, 1-2 v\rangle\right)\right]\right\}
\end{aligned}
$$

Lamination formulas $\rightsquigarrow f^{*}(\sigma)$ explicit

- Minimization w.r.t. $\sigma \Leftrightarrow$ find optimal material (standard homogenization, explicit)+ solve (anisotropic) elasticity system.
- Minimization w.r.t. $u$ is again explicit.


Cantilever for $\alpha=0.1,2,20,50$, respectively.

Remark: boundary artefacts due to relative perimeter!

## Case of unknown relaxation

We can use a level-set representation.

$$
\Omega_{\psi}=\{x \in D, \psi(x)>0\}
$$

to solve the necessary optimality conditions:

$$
\begin{cases}g_{T} \geq 0 \text { in } \Omega_{\psi} & \text { (topology) } \\ g_{S}=0 \text { on } \partial \Omega_{\psi} \cap D & \text { (geometry) }\end{cases}
$$

We can construct an approximation (close to SIMP!), then normalize:

$$
g_{\delta} \underset{\delta \rightarrow 0}{\longrightarrow}\left\{\begin{array}{l}
g_{T} \text { in } \Omega_{\psi} \\
g_{S} \text { on } \partial \Omega_{\psi} \cap D,
\end{array} \quad \bar{g}_{\delta}=\frac{g_{\delta}}{\left\|g_{\delta}\right\|_{L^{2}(D)}}\right.
$$

We perform damped fixed point iterations on the unit sphere of $L^{2}(D)$ :

$$
\psi_{k+1}=C_{k}\left(\psi_{k}, \bar{g}_{\delta}\left(\psi_{k}\right)\right)
$$

where $\kappa$ is found by line search (descent direction).


## Example: optimal design of microstructures

Goal: optimize the Representative Volume Element to obtain desired homogenized properties (periodic model)


Poisson ratio minimization without (left) and with (right) perimeter penalization (periodic boundary condition, isotropy constraint).

## Variant: total perimeter

$$
\operatorname{Per}^{T}(\Omega):=\mathcal{H}^{d-1}\left(\partial^{*} \Omega\right)
$$

$$
=\int_{\mathbb{R}^{d}}\left|D \chi_{\Omega}\right|=\sup \left\{\int_{D} \chi_{\Omega} \operatorname{div} \varphi, \varphi \in \mathcal{C}^{1}\left(\bar{D}, \mathbb{R}^{d}\right),\|\varphi\|_{\infty} \leq 1\right\}
$$

It suffices to replace the Neumann boundary condition in $L_{\varepsilon}$ by a
Robin one:

$$
\begin{cases}-\varepsilon^{2} \Delta v_{\varepsilon}+v_{\varepsilon}=u & \text { in } D, \\ \varepsilon \partial_{n} v_{\varepsilon}+v_{\varepsilon}=0 & \text { on } \partial D .\end{cases}
$$

Example: compliance minimization (level-set method)


Compliance minimization with relative (left) and total (right) perimeter penalization.

The same works in 3d


3d cantilever: without perimeter (top), with relative perimeter (left), with total perimeter (right)

The 3d perimeter does not like plates!
Other geometric criteria may be of interest.

## Numerical convergence


left: relative perimeter, right: total perimeter

## Videos

Again the level set method, while $\varepsilon$ is decreased...

- Perimeter minimization under volume constraint (projection / bisection)
Square with relative perimeter Square with total perimeter
- Compliance minimization under volume constraint Cantilever with relative perimeter
Cantilever with total perimeter
- Poisson ration minimization

Negative Poisson ratio with periodic perimeter

Extension: minimal partitions with interface energies

$$
\begin{aligned}
& D=\Omega_{1} \cup \cdots \cup \Omega_{N} \\
& \Gamma_{i j}=\partial^{*} \Omega_{i} \cap \partial^{*} \Omega_{j}
\end{aligned}
$$

Goal: minimize

$$
\sum_{i} \int_{\Omega_{i}} g_{i}+\sum_{i<j} \alpha_{i j} \mathcal{H}^{d-1}\left(\Gamma_{i j} \cap D\right)
$$



We have the pointwise approximation

$$
\begin{aligned}
\mathcal{H}^{d-1}\left(\Gamma_{i j} \cap D\right)= & \frac{1}{2}\left[\mathcal{H}^{d-1}\left(\partial^{*} \Omega_{i} \cap D\right)+\mathcal{H}^{d-1}\left(\partial^{*} \Omega_{j} \cap D\right)\right. \\
& \left.-\mathcal{H}^{d-1}\left(\partial^{*}\left(\Omega_{i} \cup \Omega_{j}\right) \cap D\right)\right] \\
= & \lim _{\varepsilon \rightarrow 0}\left[\tilde{F}_{\varepsilon}\left(\chi_{\Omega_{i}}\right)+\tilde{F}_{\varepsilon}\left(\chi_{\Omega_{j}}\right)-\tilde{F}_{\varepsilon}\left(\chi_{\Omega_{i}}+\chi_{\Omega_{j}}\right)\right] \\
\cdots= & \lim _{\varepsilon \rightarrow 0} \frac{2}{\varepsilon} \int_{D} L_{\varepsilon} \chi_{\Omega_{i}} \chi_{\Omega_{j}} .
\end{aligned}
$$

Questions: 「-convergence? variational formulation?

## Preliminary condition: lower semicontinuity

Theorem (Ambrosio-Braides, 1990)
The triangle inequality

$$
(T) \quad \alpha_{i j} \leq \alpha_{i k}+\alpha_{k j} \quad \forall i, j, k .
$$

is necessary and sufficient for the functional

$$
F:\left(\Omega_{1}, \ldots, \Omega_{N}\right) \mapsto \sum_{i<j} \alpha_{i j} \mathcal{H}^{d-1}\left(\Gamma_{i j} \cap D\right)
$$

to be lower semicontinuous (w.r.t. convergence in measure).

$\alpha_{\text {red/green }}>\alpha_{\text {red/blue }}+\alpha_{\text {green } / \text { blue }}$
$\Rightarrow$ lack of lower semicontinuity

## 「-convergence

The work space is

$$
S=\left\{\left(u_{1}, \cdots, u_{N}\right) \in L^{1}(D,[0,1])^{N}: \sum_{i=1}^{N} u_{i}=1\right\}
$$

$\Gamma$-convergence can be proven under different sets of assumptions, in particular:

Theorem
If $D$ is a Cartesian product of intervals, condition ( $T$ ) implies the $\Gamma$-convergence of the functional

$$
\left(u_{1}, \cdots, u_{N}\right) \in S \mapsto \frac{1}{\varepsilon} \sum_{i<j} \alpha_{i j} \int_{D} L_{\varepsilon} u_{i} u_{j}
$$

## Convexity issues

Consider the symmetric matrix $Q=\left(\alpha_{i j}\right)$.
Definition
We say that $Q$ is conditionally negative semidefinite $(Q \preceq 0)$ if

$$
\sum_{i j} \alpha_{i j} \xi_{i} \xi_{j} \leq 0 \quad \forall \xi \in \mathbb{R}^{N}: \sum_{i} \xi_{i}=0
$$

Theorem
If $N \leq 4$ and $(T)$ is fulfilled, then $Q \preceq 0$.
If $Q \preceq 0$ then $\mathcal{I}_{\varepsilon}$ is concave on

$$
V:=\left\{u \in L^{2}\left(D, \mathbb{R}^{N}\right): \sum_{i=1}^{N} u_{i}=1\right\} .
$$

Consequence: Legendre duality

$$
-\mathcal{I}_{\varepsilon}+\delta_{V}=\left(-\mathcal{I}_{\varepsilon}+\delta_{V}\right)^{* *}
$$

This leads to the variational formulation

$$
\mathcal{I}_{\varepsilon}(u)=\inf _{\sum_{i} v_{i}=1} \frac{1}{\varepsilon} \sum_{i, j} \alpha_{i j}\left(\left\langle u_{i}, v_{j}\right\rangle-\frac{1}{2} \varepsilon^{2}\left\langle\nabla v_{i}, \nabla v_{j}\right\rangle-\frac{1}{2}\left\langle v_{i}, v_{j}\right\rangle\right) .
$$

For minimizing $\sum_{i} \int_{D} g_{i} u_{i}+\mathcal{I}_{\varepsilon}(u)$ we again suggest alternating minimizations:

- $v_{i}=L_{\varepsilon} u_{i}$
- explicit (linear spatially separated) minimization w.r.t. $u$. Remark: If $Q \succeq 0$ (general case by additive decomposition) we obtain by another duality scheme

$$
\begin{aligned}
\mathcal{I}_{\varepsilon}(u)=\frac{1}{\varepsilon} \inf _{\tau \in\left[H_{0}^{\mathrm{div}}(\Omega)\right]^{N}} & \sum_{i, j=1}^{N} \alpha_{i j} \int_{\Omega} \tau_{i} \cdot \tau_{j} d x \\
& +\sum_{i, j=1}^{N} \alpha_{i j} \int_{\Omega}\left(u_{i}-\varepsilon \operatorname{div} \tau_{i}\right)\left(u_{j}-\varepsilon \operatorname{div} \tau_{j}\right) d x
\end{aligned}
$$

## Example

Given a partition $\left(E_{0}, E_{1}, \ldots, E_{N}\right)$ set $g_{i}=1-\chi_{E_{i}}$ : phase $i$ is favoured in $E_{i}, i \geq 1$.


Partition with 4 phases: data $E_{i}$ (left), obtained result for $\alpha_{i j}=1 \forall i, j$ (middle), obtained result for $\alpha_{i j}=1$ if $E_{i}$ and $E_{j}$ are adjacent and $\alpha_{i j}=2$ otherwise (right)

## Volume constraints

We consider the constraints

$$
\int_{D} u_{i} d x=m_{i} \forall i=1, \ldots, N
$$

The minimization w.r.t. $u$ is spatially coupled: it yields a linear programming subproblem of form

$$
\min _{\substack{\sum_{i=1}^{N} u_{i}=1 \\ u_{i} \geq 0, \int_{\Omega} u_{i} d x=m_{i}}} \Lambda(u)=\sum_{i=1}^{N} \int_{\Omega} \zeta_{i} u_{i} d x
$$

Since $N$ is small compared with the number of pixels and the unconstrained problem is straightforward we consider the Lagrangian dual criterion

$$
\begin{aligned}
\mathcal{D}(\lambda) & =\inf _{\substack{\sum_{i=1}^{N} u_{i}=1 \\
u_{i} \geq 0}} \Lambda(u)+\sum_{i=1}^{N} \lambda_{i}\left(\int_{\Omega} u_{i} d x-m_{i}\right) \\
& =\int_{\Omega} \min \left\{\left(\zeta_{i}+\lambda_{i}\right)_{i=1}^{N}\right\}-\sum_{i=1}^{N} \lambda_{i} m_{i} .
\end{aligned}
$$

Theorem
The $N$-tuple $\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is a maximizer of $\mathcal{D}$ if and only if each $\lambda_{i}$ is a maximizer of the partial function

$$
\tilde{\lambda}_{i} \mapsto \mathcal{D}\left(\lambda_{1}, \ldots, \lambda_{i-1}, \tilde{\lambda}_{i}, \lambda_{i+1}, \ldots, \lambda_{N}\right)
$$

This is also equivalent to satisfying for each $i=1, \ldots, N$

$$
\left|\left\{\lambda_{i}<\min _{j \neq i}\left(\zeta_{j}+\lambda_{j}\right)-\zeta_{i}\right\}\right| \leq m_{i} \leq\left|\left\{\lambda_{i} \leq \min _{j \neq i}\left(\zeta_{j}+\lambda_{j}\right)-\zeta_{i}\right\}\right| .
$$

Conclusion: alternating maximizations can be used at the cost of sorting pixels at each iteration.

## Examples



Partition with 5 phases and volume constraints: initialization (top left), result for $\alpha_{i j}=1 \forall i, j$ (top middle),
result for $\alpha_{\text {int } / \text { int }}=1$ and $\alpha_{\text {int } / \text { ext }}=0.5$ (top right), result for $\alpha_{\text {int } / \text { int }}=1$ and $\alpha_{\text {int } / \text { ext }}=2$ (bottom left), same case with $\varepsilon_{\text {max }}$ large (bottom right).


Verification of Herring's theoretical angles (generalization of the Fermat point).


Partition of 3 liquid phases + vapor + solid (fixed): initialization (left), result for $\alpha_{i j}=1 \forall i, j$ (center), result for $\alpha_{L L}=0.5, \alpha_{L S}=1, \alpha_{L V}=\alpha_{S V}=2$ (right).

## Anisotropic perimeter

Let $K$ be a closed, bounded, convex subset of $\mathbb{R}^{d}$. To simplify the presentation we assume int $K \neq \emptyset$. Define

$$
\begin{gathered}
\operatorname{Per}_{D}^{\rho, K}(\Omega)=\int_{\partial^{*} \Omega \cap D} \rho(x) \sigma_{K}(\nu) d \mathcal{H}^{d-1}, \\
\tilde{F}_{\varepsilon}(u):=\inf _{v \in H^{1}(D)} \varepsilon \rho^{2} \sigma_{K}^{2}(\nabla v)+\frac{1}{\varepsilon}\left(v^{2}+u(1-2 v)\right) .
\end{gathered}
$$

$\sigma_{K}$ : support function of $K$; $\quad \nu:$ inner normal
Theorem
When $\varepsilon \rightarrow 0$ one has in $L^{1}(D,[0,1])$

$$
\Gamma-\lim \tilde{F}_{\varepsilon}(u)= \begin{cases}\frac{1}{2} \operatorname{Per}_{D}^{\rho, K}(\{u=1\}) & \text { if } u \in B V(D,\{0,1\}) \\ +\infty & \text { otherwise. }\end{cases}
$$

## Application: unsupervised image classification

We take $K$ as an ellipse $\rightsquigarrow$ linear PDE
Original image $f \rightarrow$ segmented image $w=\sum_{i} u_{i} c_{i}$
by minimizing $\quad\|w-f\|_{L^{2}}^{2}+\frac{\alpha}{2} \sum_{i=1}^{N} \operatorname{Per}_{D}^{\rho, K}\left(\Omega_{i}\right)$.


Original image (top), 3 phase classification with isotropic perimeter (left), 3 phase classification with anisotropic perimeter (right) $K$ is the ellipse of center 0 and axes 100-1.

## Nonlinear case

Consider the segment

$$
K=\{t \vec{k},-\beta \leq t \leq \alpha\} .
$$

We use proximal splitting.


$$
\begin{array}{cccc}
\alpha=1, \beta=0.1 & \alpha=1, \beta=1 & \alpha=1, \beta=0.1 & \alpha=1, \beta=1 \\
\vec{k}=(0,1) & \vec{k}=(0,1) & \vec{k}=\left(\cos \frac{\pi}{3}, \sin \frac{\pi}{3}\right) & \vec{k}=\left(\cos \frac{\pi}{3}, \sin \frac{\pi}{3}\right.
\end{array}
$$

Sets minimizing the anisotropic perimeter given by a segment

## Perspective:

Penalization of vertical downward normals (overhangs) for the design of 3D printed parts.


