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Introduction

The Kramers-Fokker-Planck equation

The Kramers-Fokker-Planck equation is the evolution equation for the
distribution functions describing the Brownian motion of particles in
an external field:

ow
ot

F(x KT
= (—V'VX'FVv'('yV— ,(77))+’yrnAv) W,
where F(x) = —mV,V(x) is the external force and W = W(t; x, v) is
the distribution function of particles for x,v € R” and t > 0.

This equation is also called the Kramers equation (H.A. Kramers
(1940)) or the Fokker-Planck equation.
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After appropriate normalisation of physical constants and change of
unknowns, the KFP equation can be written into the form

Aru(t; x,v) + Pu(t; x,v) =0, (x,v) e R" xR", t > 0, (1)

with initial data
u(0; x, v) = Uo(x, v). (2)

P is the KFP operator defined by

1

Denote Py = —A, + v — 3+ V- V,.
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Assume

VX)) + ()| VaV(X)[ < C(x)77, xR, 3)
for some p > —1. The potential is decreasing if p > 0 and slowly
increasing if —1 < p < 0).
When p > —1 the potential term V, V(x) - V, is relatively compact

w.rt. Py. Therefore one may study the KFP equation by scattering
methods.
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Let m be the function defined by

1 12
m(x,v) = We 2(F+V(),

Then 9t = m? is the Maxwellian and m verifies the stationary KFP
equation
Pm=0 inR%,.

When 9t can be normalized in L', it is the (global) equilibrium.
Otherwise, 9t can be interpreted as a local equilibrium.



Some known results

The large-time behavior of solutions of the KFP equation is mostly
studied for confining potentials :

V(x) > C{x)™, [V V(x)| = Clx)

for |x| large. In this case, 0 is a discrete eigenvalue of P. The typical
result is return to the equilibrium with exponential rate: 3¢ > 0 such
that

u(t) = (m,up)m + O(e™ ), t— +oo,

where V(x) is assumed to be normalized by

/ e V®adx = 1.
Rn



Some known results

For weakly confining potential V(x) ~ (x)?, |x| = o0, 0 < 0 < 1,
(p = —0o), 0 is an eigenvalue embedded in the essential spectrum of

P. T. Li and Z.F. Zhang (2018) proved the convergence to equilibrium
with sub-exponential rate :

u(t) = (m, to)m + O(e~> "), t = 400,



Some known results

For decreasing potentials, it is shown by W. (2015) for n = 3 and R.
t — 400,

1

Novak-W. (2020) for n = 1 that
t = n ’ O t_e )
u(t) = (o (. tom + O(t™)

in weighted L2-spaces with weight in x-variables.



Notation

In this work, we consider potentials V/(x) satisfying (3) with p > 1 and
study LP — L9 estimates of u(t) for t > 0, where

[P = LP(RY",; dxdv).
For f € LP and T bounded linear operator from LP to L9, we denote :

Ifllp = Iflles W Tllp—q = [Tl eeee.Lo)- (4)



Notation

For a closed linear operator T in L2 with C$°(R?") as a core and for
p € [1, 0], we still denote by the same letter T its minimal closed
extension in LP (i.e., the closure in LP of the restriction of T to
C5e(R2M)).

Under fairly general condition, e~ is a strongly continuous positivity
preserving contraction semigroup in LP. Since for 1 < p < oo,

<e—tP|Cgo)|Lp — o 1 Plegle.

our notation is consistent in some sense.



The main result

Theorem 1 (Zhu LU (Hohai Univ., Nanjing) -W.)

Let n = 3 and condition (3) be satisfied with p > 1. For
1 < p < g < oo, there exists some constant C > 0 such that

C

—tP
e € ——
|| ||P"q (’y(t))z%(17§)

t €]0, 0|, (5)

where (t) = o(t)0(t) with

o(t) = t — 2coth(t) 4 2cosech(t), 6(t) = 4re 'sinh(t). (6)

y(t) ~ct*ast — 0and (t) ~ c'tas t — oo.



The main result

6(t) is related to the semigroup generated by the harmonic oscillator

H:?RP:—AML%MZ—n veRS.

Ea
Forp=1,9 = oo,
(0(1) 8 = O(t72), t—o0i(o(t) % =0(t"%), t—0,.

This term can be compared with e« as map from L'(R?) to L>°(R?)
2
as t — oo and with of e~ !IP1° as t — 0. This result may be explained
by the fact that at low energies, P behaves like a Witten Laplacian (B.
Helffer-F. Nier, W.X. Li, - - - ), while globally P is sub-elliptic in x with

the loss of § derivatives.



A comment

For decreasing potentials, it is also natural to study the KFP equation
in LP spaces, where

LP = L*(R}: LP(RY)).
(W(x,v,t) =m(x, v)u(x,v,t)). One can show that for § > 0,
e %P PP [P IP
is bounded. Theorem 1 implies

C

t(1-9)

e || oy ra < t>1. 7)



Method of the proof

Method to prove Theorem 1 :

@ Study first the free semigroup e~ in LP — L9 setting, where

1 n
POZ—AV+Z|V\275+V~VX.
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Method to prove Theorem 1 :
@ Study first the free semigroup e~ in LP — L9 setting, where
1 n
POZ—AV+Z|V\275+V~VX.

@ Consider P as perturbation of Py and use Duhamel’s formula.
The main task is to estimate e~ when t large.



Method of the proof

Method to prove Theorem 1 :
@ Study first the free semigroup e~ in LP — L9 setting, where
1 n
POZ—AV+Z|V\275+V~VX.

@ Consider P as perturbation of Py and use Duhamel’s formula.
The main task is to estimate e~ when t large.

@ The method still works for n > 4 (although not written).



The fundamental solution
- — 1P,
Global-in-time estimates for e 70

The free KFP operator

Let P, be the free KFP operator:

The free KFP equation

P0:v~VX—AV+%|v|2—g,(x,v)ERZ”. (8)
One has
Pou(x,v) = F\Po(€)u(s,v), where 9)
Po(§) = —Av+1§n:(vj+2i£j)2—g+ €2 (10)
j=1
g, v) = (Froeu)(&v) 2 / e ™fu(x,v)dx.  (11)
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The free KFP operator

The free KFP equation

Py

Denote R R
D(Po) = {f € L*(RE.,): Po(€)f € LA(RE")}. (12)
Then P £ Fx—e Po]-';_‘>£ is a direct integral of the family of complex

harmonic operators {Po(£): &€ € R}, {Py(€), & € R"} is a holomorphic
family of type (A).

The distributional kernel of e~ can be deduced from Melher’s
formula by complex deformation.



Let n > 1. The distributional kernel of e~ s given by
\x X —w(t)(v+v' )\ K(

The free KFP operator
Lemma 2
/
v, v’ t).

F(x,v,x',v';t) = L —e =
(4ma(t))2
where
KW Vit) = e t0(vi iy =iy
(6(1))2
w(t) = coth(t) — cosech(t)
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The free KFP operator

The free KFP equation

Py

n

K(v,V'; t) is the distributional kernel of e=™, H = —A, + 1v2 — .

The fundamental solution F(x, v, x’, v/; t) for the free KFP equation
has several nice properties. For example, one has for f € C5°(R?"),

|/(e*”’°f)(x, v)dx| < (e Hg)(v), veR”", (13)

where g(v) = [|f(x’,v)[dx'.
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The free KFP operator

From the formula of F(x, v, x’, v/; t), one obtains

The free KFP equation tPy

Proposition 1

Letn>1. Fort > 0, e~ defined on C3°(R?") extends to an
operator bounded from L' to L>> and the following estimate is true for
the free KFP operator:

1

e—fPQ < —
&7 o = G

(14)

fort > 0. Here

v(t) = a(1)0(t), 6(t) = 4re 'sinh(t).
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The free KFP operator

The free KFP equation tPy

Proposition 2

One has

&= lpmsp < 1 (15)
for1 < p < oo and
I
(4my (1)) #(1—0"

for1 < p<q<oo. e t>0,is astrongly continuous positivity
preserving contraction semigroup in LP for1 < p < oc.

lle= || p—a < t>0, (16)




. The fundamental solution
The free KFP equation

Py

Global-in-time estimates for e

The free KFP operator

Proof. By explicit calculation, one has

le=™oflly < lle=™f]ls < [If]]1
(e~ — D)fll < (e = )[4
for f € L'. This shows that [[e~?||;_,; < 1. Since the same is true in

L2 — L2, (15) follows by duality and interpolation. (16) follows from
Proposition 1 and (15). O



. The fundamental solution
The free KFP equation tPy

Global-in-time estimates for e

The free KFP operator

To study the full KFP operator P, we want to treat the
W = —-V,V(x) -V, as perturbation and need some more estimates
for e=Po,

Proposition 3

Let k € N. The following estimates are true for the free KFP equation:

~tPy ~thy 2 -4
) e~ Pl + D) &~ Pllrsoe < g (14478) (17)

and for any p € [1, ],

[V e oo + (DN el < C(1+17E) (1)

fort > 0.
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The free KFP operator

Proof. (L' — L°>°). By the upper bound

The free KFP equation

Py

1 _coshz(t)71 2
0 < K(v, v/, ) < ————5€e Zm@ v

(476(1))¢

one obtains

I(v) e~ f(, )l

1 k
< 1 K(v, V', b)||f
S Gra()E SRV KV D
< ¢ (A +t2)|flly, t>0
< 7 2 1, .
(v(1))2
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The free KFP operator

By duality and interpolation, one obtains

The free KFP equation —tPy

Corollary 4
For1 < p<q<ooandforanyk € N, one has
C
(V)< e™™|lposq + (D) €™ [|poq f (1 + t_z) , (19)
(v(1)) %
and
&7V lpsq + €7D g < ——= s (14178, (20)
o T pBY |
fort > 0.




Short-time estimates for e~
—tP

P Large-time estimate for e
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Global-in-time estimates for e~ °

Set P = Py + W with W = -V, V(x) - V,. Under the condition
p > —1, W is relatively bounded perturbation of P, with relative
bound 0 and P is closed with D(P) = D(P,). Since

e~ Wi(x,v) = f(x,v + tV, V(x)),

e~ and e~ are strongly continuous semigroups of contractions in
LP, 1 < p < co. By theorem on perturbation of semigroup of
contractions, e~ is a strongly continuous semigroup of contractions
in LP, p e [1,00[.

We are interested in e~F when it is regarded as map from L” to L9,
q>p.



Short-time estimates for e~ P
—tP

P Large-time estimate for e
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Short-time estimates for e F

Letn > 1 and (3) be satisfied with p > —1. Then one has for
1<p<g< >

6™ lpmq < t €]0, 1]. (21)

(B0’
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Short-time estimates for e F

Proof. One uses Duhamel’s formula
t
e P =g th +/ e~ (=P We—sPds. (22)
0
We apply (22) successively for ¢ > p and q near p such that

t
[ e 9P W g < o
0

Leta(p,q) = 3(; — 3)-
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Short-time estimates for e F

Take
1=p1<pa<---<pPx1<p 2and1 1<1
= P o <o < Pk—1 k = — < .
P Pi+1  4n
Writing e~ as (e~ +F), one obtains
_ _t
le®llise < e kpllpﬁpz e Plp 2
< CHy()™™ (1,p2) =+ —(Px—1,2)
= Cy(t)™

for t €]0,1]. This proves (21) for p =1 and q = 2. The general case
follows by duality and interpolation. O
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Large-time estimate for e ¥

For t > 1 large, we prove the following

Theorem 4

Assume n = 3 and that (3) is satisfied with p > 1. One has for
1<p<g<oo
3
le™®llpq < Ct72(0) (23)

fort e [1,00].

To prove Theorem 4, we use an earlier result proven by stationary
method. The condition n = 3 is needed in low-energy spectral
analysis of P.



tP
—tP
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Large-time estimate for e ¥

Theorem 5 (W., CMP (2015))

Letn=3andp>1. ForO<r<sandr< 2, one has

le=® || p2s poms < C(1)™", 1 > 0. (24)

Here £25 — L2(RE ,, (x)2dxdVv).

The main task to prove (24) is to show that the resolvent of KFP
R(z) = (P — z)~! admits an asymptotic expansion in appropriately
weighted spaces :
1
R(2) = Ao+ o (m, )m + O(|[++)

for z € C\ Ry with |z| small.
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Large-time estimate for e ¥

To prove Theorem 4, write
e P =e P 1 J(t)+ J(t) (25)

where

t
It = /e*(’*s)F’OWe*SF’0 ds, (26)
0

t s
J(t) = / / e =9 We=mPWe=(s-7P grds. (27)
0 JO
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Large-time estimate for e ¥

Decompose /(t) = I (t) + k() and J(t) = Ji(t) + J=(t) where
L(t) = /é e (=P We=sh g,
0

t
h(t) :/ e~ (=5)P WP ds,

2

L s
Ji(t) = / ’ / e (=P We= P We=(s—7)P drds,
0 0

t s
Jg(t):// e (=P We=mPWe=(s=7)P grds
1 Jo
2
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Large-time estimate for e ¥

I1(t) and k(t) can be treated by the results for e~. One has
(B)ll100 < CE72, fort>1. (28)

To treat J(t), we use Theorem 5 on large-time estimate of e~ in
weighted spaces.
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Consider
L ops
J1(t):/ / e (=P We= TP We= (=P drds,
0 0

where W = -V, V(x)-V,. Then

@ The cases 7 ~ 0 and s — 7 ~ 0 can be treated separately.
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Consider
L ops
J1(t):/ / e (=P We= TP We= (=P drds,
0 0

where W = -V, V(x)-V,. Then

@ The cases 7 ~ 0 and s — 7 ~ 0 can be treated separately.
o |[e(t=9Py, |y = O(t %) for s < L.



Short-time estimates for e~
—tP

P Large-time estimate for e

Global-in-time estimates for e
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Consider
L ops
J1(t):/ / e (=P We= TP We= (=P drds,
0 0

where W = -V, V(x)-V,. Then
@ The cases 7 ~ 0 and s — 7 ~ 0 can be treated separately.
o |[e(t=9Py, |y = O(t %) for s < L.

@ For p >3 and close to 3, s — ||V, e~5"|_,, is integrable in
se[1,00[.
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Large-time estimate for e ¥

We are left with the term V, Ve~ PV, V : P — L' p > 3 close to 3
and 7 > 1. One has

o ViVel'(R¥orr> 2.
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Large-time estimate for e ¥

We are left with the term V, Ve~ PV, V : P — L' p > 3 close to 3
and 7 > 1. One has

o ViVel'(R¥orr> 2.
]

V Ve P . [P r2pti—c and e 9Py, V. 2-(p—z-9 [

are bounded.
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Large-time estimate for e ¥

Recall that
1€l oy e poieyo = O((T) 072172,
One has
[ ()50 < Ct-*/ / ~brees _ =% grgs
fort > 1.

The same is also true for Jx(1).
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Large-time estimate for e ¥

This proves

Ct—2 ifp>3
1 o0 < ’ 2

Consequently, Theorem 4 is proved if p > 2. For 1 < p < 2, one

obtains .
e | ore < CtPlra)Te, (30)

fort>1and1<p<qg<oo.

Thecase 1 < p < % can be proved by a boost-up argument, making
use of (30) instead of £2:¢ — £2~S estimate of e~ 1.
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A remark on one dimensional case

Letn=1andp > 4. One has, s > 3,
1€ || oy zs < CB)2, 8> 1. (31)

The method used in the proof of Theorem 4 does not give any decay
of e~ in L' — L> for t large. For example, for the term I;(t), our
method gives

t

15 (D)1= < C <t% +/2<t—s>é<s>éds>, t>1.
0

The last integral does not decay as t — cc.
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